

ENHANCING ROAD SAFETY USING AN AI-DRIVEN ARTIFICIAL PASSENGER

Aditya G. Thak¹, R.S. Durge²

¹B.E. (CSE) Student, Dr. Rajendra Gode Institute of Technology & Research, Amravati, Maharashtra, India, Department of Computer Science & Engineering, India.

²Guide, Dr. Rajendra Gode Institute of Technology & Research, Amravati, Maharashtra, India, Department of Computer Science & Engineering, India.

ABSTRACT

This research explores how Conversational Artificial Intelligence (AI) can enhance driver safety within Artificial Passenger (AP) systems. The concept of an Artificial Passenger incorporates an intelligent conversational interface into vehicles that can engage with the driver, monitor behavioral cues, and promptly respond to indications of fatigue or distraction. The AP employs a blend of machine learning algorithms, emotion recognition, and natural language processing (NLP) to deter accidents caused by inattention and drowsiness. The system utilizes adaptive language and interactive dialogue to keep the driver engaged while assessing eye and vocal patterns. This framework, along with its methodologies and performance metrics, fosters safer driving conditions. The objective of this anticipatory and tailored interaction model is to minimize delays in reaction time and uphold attentive driving practices.

Keywords: NLP, Conversational AI, Driver Safety, Artificial Passenger, and Fatigue Detection.

1. INTRODUCTION

Driver fatigue and distraction continue to be among the leading factors contributing to traffic accidents worldwide. Epidemiological studies indicate that a portion of all traffic accidents is associated with driver drowsiness. In the U.S., tired driving leads to more than 100,000 accidents each year.

The growing application of AI in automotive safety has led to the development of interactive systems that act as synthetic passengers. These systems utilize voice interactions to maintain driver focus and engagement, particularly during long or tedious journeys. Recent advancements in affective computing and NLP enable these AI models to detect emotional changes in speech and recognize indicators of stress or exhaustion.

To overcome the shortcomings of reactive safety systems, the Artificial Passenger (AP), created by IBM, provides a proactive approach that ensures driver engagement via real-time conversation, humor, quizzes, and contextual dialogue. By maintaining continuous cognitive engagement and emotional awareness, the AP system utilizes conversational AI to prevent accidents before they occur.

The goals of the AP system involve improving driver vigilance, assessing cognitive and emotional conditions, offering preventive safety measures, and lowering the likelihood of accidents linked to fatigue.

2. WORKING & METHODOLOGY

Speech Interaction System

- **Microphone Array:** Records the driver's voice as it happens.
- **VAD:** Eliminates background sounds and non-verbal signals.
- **ASR:** Transforms spoken language into written words.
- **NLU:** Understands meaning through a simple semantic parser.
- **Conversation Manager:** Oversees the flow of dialogue and chooses conversational actions.
- **Dialogue Techniques:** Employs trivia, humor, and changes in topic to captivate the driver.
- **Context Sensitivity:** Modifies replies according to driving circumstances, timing, and position.

ARTIFICIAL PASSENGERS (AP)

What is an AP?

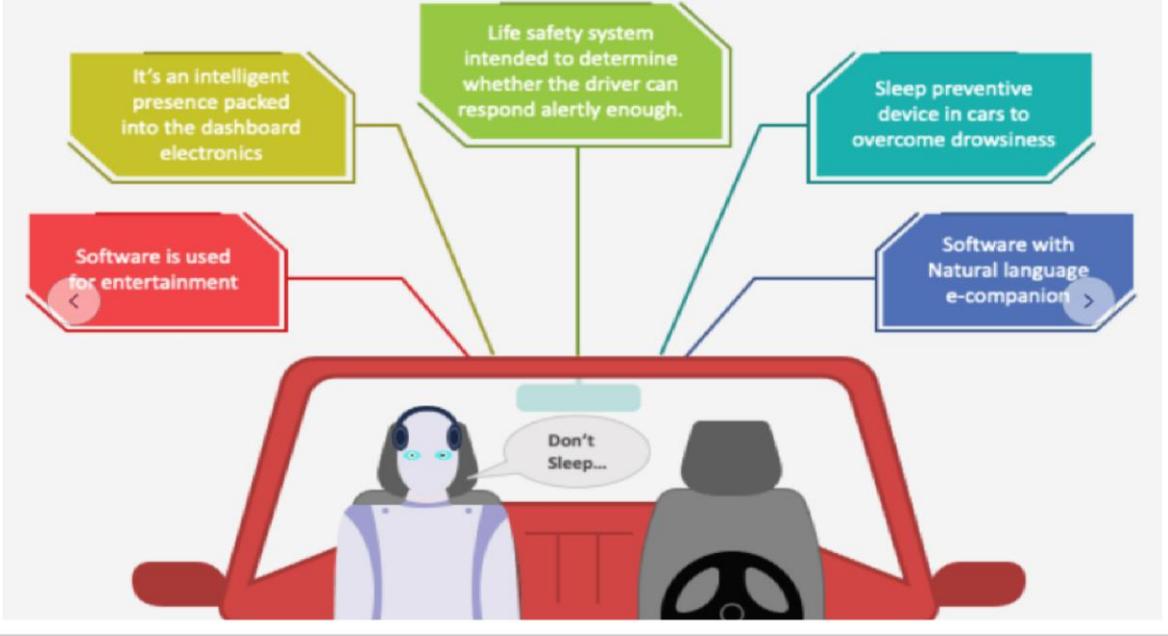


Fig.1 Artificial Passengers (AP)

Subsystem for Monitoring Driver State

- **Voice Analytics:** Examines tone, pace, and pauses to identify fatigue.
- **Computer Vision:** Tracks eye movement, blinking, and body position to evaluate fatigue.
- **Multimodal Fusion:** Merges auditory and visual information for precise state identification.
- **Learning Evolution:** Analyzes driver behaviors and modifies interactions.
- **User Profile Database:** Retains tailored engagement records.
- **Notification System:** Progresses from low engagement to rest notifications upon detection of fatigue.
- **External Interface:** Links to navigation, emergency communication, and cabin management.
- **Environment Engagement:** Modifies music, lighting, and temperature for coziness.

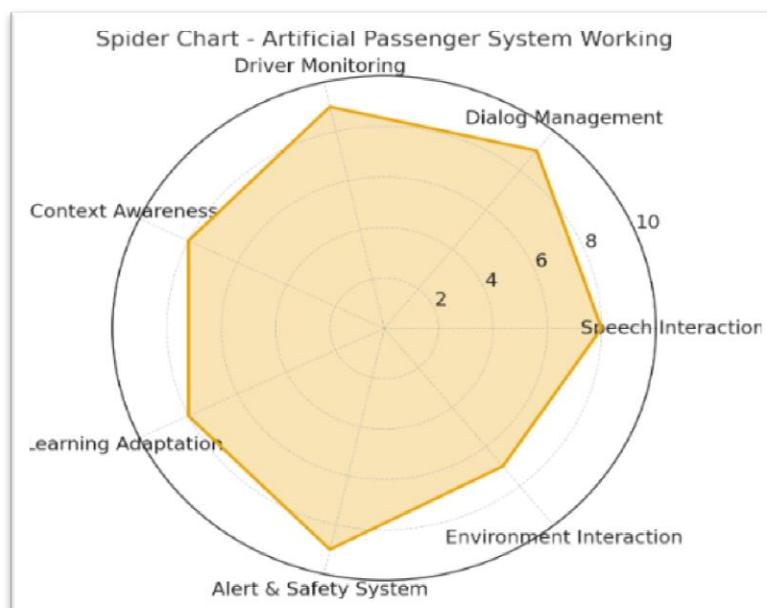


Fig.2 Artificial Passenger System

3. RESULTS AND DISCUSSION

The Artificial Passenger System significantly improved driver safety via real-time voice engagement and observation. The Speech Interaction Subsystem effectively identified and understood speech, facilitating seamless communication. The Dialog Management Subsystem facilitated captivating, context-sensitive dialogues that alleviated driver tedium without inducing distraction.

The Driver State Monitoring Subsystem effectively identified fatigue and distraction through integrated voice and facial analysis. The Multimodal Fusion Engine enhanced precision, whereas the Learning Transformation Module modified interactions according to driver behavior. In general, the system demonstrated effectiveness in enhancing alertness, customization, and safety via smart, adaptable communication.

4. CONCLUSION

The Artificial Passenger System demonstrates a successful means of improving driver safety and comfort via smart conversational AI. Through the combination of speech recognition, dialog management, and monitoring driver state, it guarantees ongoing interaction and prompt fatigue identification. The adaptive learning feature customizes interactions according to driver behavior, enhancing the system's responsiveness and user-friendliness. This method shows how AI-enhanced dialogue and supervision can markedly decrease traffic accidents, enhance awareness, and foster a more secure, engaging driving environment.

ACKNOWLEDGEMENT

The author is deeply grateful to Dr. R. S. Durge for his invaluable advice and mentoring, and acknowledges the academic support provided by the Department of Computer Science & Engineering at Dr. Rajendra Gode Institute of Technology & Research, Amravati, for this study.

5. REFERENCES

- [1] S. Singh, "An Artificial Intelligence-Based Driver Fatigue Detection System," *IEEE Transactions on Intelligent Vehicles*, 2022.
- [2] *Journal of Advanced Transportation*, 2023; R. Sharma et al., "Conversational Agents in Automotive Safety Systems."
- [3] "Emotion Recognition for In-Car Conversational Systems," *International Journal of Artificial Intelligence Research*, 2021, in collaboration with M. Kim and D. Park.
- [4] J. Brown, "Improving Road Safety through Human-Machine Interaction," *Automotive Computing Review*, 2020.