INTERNATIONAL JOURNAL OF PROGRESSIVE e-ISSN :
[IPREMS RESEARCH IN ENGINEERING MANAGEMENT 2583-1062
\f@

AND SCIENCE (IJPREMS) Impact
WWW.ijprems.com (Int Peer Reviewed Journal) Factor :
Vol. 05, Issue 10, October 2025, pp : 405-408 7.001

editor@ijprems.com

A COMPREHENSIVE STUDY ON TINYML: RUNNING MACHINE
LEARNING MODELS ON MICROCONTROLLERS
Jain Mannat Nitin', Patel Uday Bhadreshkumar?,
Patel Jaimil Ravindrakumar?®, Patel Jaysmin Dilipbhai’, Patel Janki Tejas’

12345Department of Computer Engineering, SAL College of Engineering,
Ahmedabad, India.

ABSTRACT

Tiny Machine Learning (TinyML) is an emerging discipline that enables the execution of machine learning inference
on ultra-low-power, memory-constrained microcontrollers and edge devices. By shifting intelligence to the device,
TinyML reduces latency, improves privacy, and lowers bandwidth and energy costs associated with cloud-centred
architectures. This paper reviews the technical architecture and toolchain of TinyML, surveys prominent applications
across domains, discusses model optimization and deployment strategies, and analyses challenges including resource
constraints, energy management, security vulnerabilities, and update mechanisms. We also highlight promising
research directions such as on-device learning, federated approaches, neural architecture search tailored for
microcontrollers, and hardware—software co-design.

Keywords: TinyML; Edge Al; Microcontroller; TensorFlow Lite Micro; Quantization; On-device Inference.

1. INTRODUCTION

The proliferation of the Internet of Things (IoT) has produced a vast ecosystem of battery-powered and always-on
devices that continuously collect sensor data. Historically, sensor streams have been transmitted to centralized servers
or cloud platforms for processing and machine learning inference.

Although cloud-based solutions provide considerable compute resources, they introduce several drawbacks: higher
end-to-end latency, dependence on network connectivity, increased operational cost, and concerns regarding user
privacy and data sovereignty. TinyML addresses these constraints by enabling meaningful inference directly on
microcontrollers (MCUSs), which typically offer only tens to hundreds of kilobytes of RAM and a few megabytes of
flash storage.

1.1 Background and Motivation

Edge intelligence and TinyML have emerged as an intersection of embedded systems and machine learning with the
specific aim of delivering real-time, privacy-preserving analytics in resource-constrained environments.

Motivations driving TinyML adoption include the need for ultra-low latency for safety-critical applications, reduced
communication energy for distributed sensor networks, and compliance with privacy regulations by minimizing raw
data transmission. Additionally, advances in software toolchains and compiler optimizations have lowered the barrier
to porting compact models to MCUs, enabling practical deployment scenarios in remote and industrial settings.

1.2 Contributions of this Paper

This paper retains the core exposition of TinyML while expanding the technical depth on optimization techniques,
benchmarks, and practical deployment considerations. The principal contributions are: (i) a systematic overview of the
TinyML toolchain and optimization strategies; (ii) a comparative summary of frameworks and hardware platforms
suited for TinyML,; (iii) an analysis of measurement metrics and benchmarking practices; and (iv) a discussion of
research directions including federated and continual learning on constrained devices.

2. TECHNICAL ARCHITECTURE OF TINYML

A standard TinyML pipeline begins with data collection and offline training on a workstation or cloud instance,
proceeds through model compression and conversion to an inference-ready format, and culminates in deployment to
an MCU where an optimized runtime performs inference. Figure 1 illustrates a canonical TinyML system architecture,
highlighting the development and deployment stages.

2.1 Model Optimization Techniques

Model optimization is central to TinyML. Popular techniques include: - Quantization: Converting 32-bit floating-point
weights and activations to 8-bit integers (or lower) reduces model size and enables faster integer-only inference on
MCUs without an FPU. Per-channel quantization, symmetric/asymmetric schemes, and proper calibration via a
representative dataset are crucial to reduce accuracy.

degradation. - Pruning and sparsity: Removing redundant weights or entire channels and leveraging sparsity-aware

@ International Journal Of Progressive Research In Engineering Management And Science 405

INTERNATIONAL JOURNAL OF PROGRESSIVE e-ISSN :
[IPREMS RESEARCH IN ENGINEERING MANAGEMENT 2583-1062

AND SCIENCE (IJPREMS) Impact
WWW.ijprems.com (Int Peer Reviewed Journal) Factor :
Vol. 05, Issue 10, October 2025, pp : 405-408 7.001

editor@ijprems.com

runtimes can reduce memory and compute costs. However, sparse representations may complicate runtime
implementation on simple MCUs. - Knowledge distillation: Training a smaller ‘student’ model to mimic a larger
'teacher' model yields compact networks that retain accuracy. — Architecture search and micro-design: Manual or
automated neural architecture search (NAS) tailored for MCU constraints can yield highly efficient microarchitectures
(e.g., depthwise separable convolutions, pointwise layers).

2.2 Inference Engines and Conversion Toolchains

A robust toolchain reduces friction when porting models to constrained hardware. TensorFlow Lite for
Microcontrollers (TFLM) provides a minimal runtime with C++ APIs and example projects (e.g., keyword spotting)
and supports integer-only models. CMSIS-NN offers highly optimized kernels for ARM Cortex-M processors,
improving execution efficiency. Edge Impulse and platform-specific exporters provide convenient pipelines from data
collection to an MCU-flashable binary. Compiler toolchains and link-time optimizations also play a role in minimizing
binary size.

3. APPLICATIONS OF TINYML

TinyML's low-power, on-device inference enables a wide variety of applications across domains. Below we detail
representative use cases and practical considerations for deployment.

3.1 Healthcare and Wearables

In healthcare, TinyML enables continuous monitoring for arrhythmia, sleep apnea, and fall detection directly on
wearable devices. Privacy is a critical requirement; hence inference on-device prevents raw biometric signals from
leaving the user's device. Low false-positive rates and explainability are important in medical settings; therefore
models must be validated across diverse demographics and environmental conditions.

3.2 Agriculture and Environmental Monitoring

Agricultural deployments benefit from TinyML when connectivity is intermittent. Models that classify crop disease
from camera images, detect pest activity via acoustic signatures, or predict irrigation needs from

multi-sensor fusion can operate autonomously in the field, reducing the need for costly data transmission. Energy
harvesting and low-power radios extend the operational lifetime of such devices.

3.3 Industrial 10T and Predictive Maintenance

TinyML enables anomaly detection and predictive maintenance by continuously analysing vibration, temperature, and

acoustic sensors. Detecting subtle anomalies at the edge allows immediate local mitigation actions and reduces the
frequency of costly machine downtime.

4. TOOLS, FRAMEWORKS, AND HARDWARE PLATFORMS

This section compares common frameworks and hardware choices. TensorFlow Lite Micro is widely adopted due to
its active community and

and one-click deployment, suitable for rapid prototyping. CMSIS-NN is indispensable for ARM Cortex-M devices,
delivering near-optimal performance for convolutional and fully-connected layers.

4.1 Hardware Comparison

Common hardware targets include ARM Cortex-M series (M0/M3/M4/MT7), which provide a balance of performance
and low power; ESP32, which includes Wi-Fi and dual-core processors for heavier workloads; and specialized boards

like Arduino Nano 33 BLE Sense that integrate sensors for rapid prototyping. STM32 microcontrollers offer a wide
range of memory and peripheral options and are often selected for industrial-grade TinyML deployments.

Platform Typical RAM Flash Notes
ARM Cortex-M0/M3 16-64 KB 128-512KB Extremely Low-Powered,
Limited compute
ARM Cortex-M4/M7 64-512 KB 1-4 MB DSP Extensions, FPU on some
variants
320 KB - .
ESP32 4 MB (typ) WiFi/Bluetooth Higher power
(approx)
Arduino Nano 33 BLE Sense 64 KB 1 MB Onboard Sensors_,, Good for
prototyping

@ International Journal Of Progressive Research In Engineering Management And Science 406

INTERNATIONAL JOURNAL OF PROGRESSIVE e-ISSN :
[IPREMS RESEARCH IN ENGINEERING MANAGEMENT 2583-1062

AND SCIENCE (IJPREMS) Impact
WWW.ijprems.com (Int Peer Reviewed Journal) Factor :
Vol. 05, Issue 10, October 2025, pp : 405-408 7.001

editor@ijprems.com

5. CHALLENGES AND LIMITATIONS

Despite its promise, TinyML faces several technical and operational challenges that constrain adoption in critical
domains. Below we examine these limitations in detail.

5.1 Memory and Computation Constraints

Typical microcontrollers provide severely constrained RAM and flash. Memory fragmentation, stack/heap usage by
runtimes, and the need to load model weights into flash (or external memory) require careful engineering.

Developers must minimize dynamic allocations and rely on static buffers where possible.

5.2 Energy and Power Management

Battery-operated TinyML devices must balance inference frequency with energy consumption. Aggressive duty-
cycling, event-driven sensing, and ultra-low-power wake-up mechanisms are key design patterns. When continuous
sampling is required, careful sensor selection and low-power front-ends help extend lifetime.

5.3 Security, Privacy, and Maintainability

Local inference reduces transfer of raw data but introduces firmware and model integrity concerns. Models and
firmware must be signed and protected to prevent tampering. Furthermore, side-channel attacks and model extraction
threats have been demonstrated on embedded ML stacks, necessitating countermeasures such as masking, obfuscation,
and secure boot. Maintainability and secure update mechanisms (OTA) are essential for long-lived deployments.

5.4 Model Lifecycle and On-device Adaptation

Training remains costly and typically offline; thus, in-field model updates are often performed by replacing firmware
images. Emerging research on

on-device incremental learning, federated learning, and efficient personalization techniques aims to reduce reliance on
full re-training cycles while preserving privacy and computational feasibility.

6. FUTURE SCOPE AND RESEARCH DIRECTIONS

TinyML research is rapidly evolving. The following directions offer promising opportunities for improving both
capability and reliability of on-device intelligence.

6.1 Federated and On-device Learning

Federated learning enables model improvements by aggregating weight updates from client devices without
transferring raw data. Research into communication-efficient update protocols and compression of model gradients is
necessary to make federated approaches viable on severely constrained hardware. On-device continual learning
methods that avoid catastrophic forgetting and require minimal compute remain an open research challenge.

6.2 Neural Architecture Search & AutoML for TinyML Automated methods to discover microarchitectures optimized
for MCU constraints can provide significant efficiency gains. NAS techniques that incorporate energy and memory
constraints into objective functions are particularly relevant for TinyML.

6.3 Hardware-Software Co-design

Co-design of lightweight models and microcontroller features — including vector extensions, optimized instruction
sets, and small accelerators — will allow more expressive models to execute efficiently at the edge. The emergence of
low-power NPUs and RISC-V-based microcontrollers with vector extensions promises new optimization
opportunities.

6.4 Sustainability and Green Al

TinyML naturally aligns with green computing objectives due to reduced data transfer and lower energy per inference.
Evaluating environmental impact using standardized metrics and designing models that minimize carbon footprint are
meaningful directions for future work.

7. EXPERIMENTAL GUIDELINES AND METRICS

Researchers should evaluate TinyML systems using multiple orthogonal metrics: model size (bytes), peak RAM
usage, latency per inference (ms), energy per inference (mJ), throughput (inferences per second), and standard
accuracy metrics (accuracy, F1 score). When possible, adopt community benchmarks such as MLPerf Tiny to enable
reproducible comparisons. Power should be measured using instrumentation (e.g., Monsoon, Otii Arc) or
high-resolution shunt measurement. Memory profiling and linker map analysis help ensure that models and runtimes
meet target constraints.

8. CONCLUSION

This paper presents an expanded overview of TinyML, describing the architecture, optimization techniques,

@ International Journal Of Progressive Research In Engineering Management And Science 407

INTERNATIONAL JOURNAL OF PROGRESSIVE e-ISSN :
[IPREMS RESEARCH IN ENGINEERING MANAGEMENT 2583-1062

AND SCIENCE (IJPREMS) Impact
WWW.ijprems.com (Int Peer Reviewed Journal) Factor :
Vol. 05, Issue 10, October 2025, pp : 405-408 7.001

editor@ijprems.com

application domains, implementation tools, and practical challenges. TinyML reduces latency and improves privacy

by enabling on-device inference, yet significant research remains to address constraints in memory, energy, security

and maintainability. Continued progress in toolchains, model optimization, and hardware advances will accelerate

adoption across commercial and societal applications.

9. REFERENCES

[1] M. Shafique, T. Theocharides, V. Reddi, and B. Murmann, “TinyML: Current Progress, Research Challenges,
and Future Roadmap,” IEEE Design Automation Conference, 2021.

[2] Y. Abadade etal., “A Comprehensive Survey on TinyML,” IEEE Access, vol. 11, 2023.

[3] V. Janapa Reddi et al., “MLPerf Tiny Benchmark,” NeurlPS Datasets and Benchmarks Track, 2021.

[4] J.Linetal, “Tiny machine learning: Progress and futures,” IEEE Circuits and Systems Magazine, 2023.

[5] P.P.Ray, “A review on TinyML: State-of-the-art and prospects,” Journal of King Saud University - Computer
and Information Sciences, 2022.

[6] C. Banbury et al., “Micronets: Neural network architectures for deploying tinyml applications on commodity
microcontrollers,” MLSys, 2021.

[7] Edge Impulse documentation and TensorFlow Lite for Microcontrollers resources.

[8] CMSIS-NN: ARM optimized neural network kernels for Cortex-M devices.

@ International Journal Of Progressive Research In Engineering Management And Science 408

