

A NOVEL DESIGN AND PROTOTYPE FOR A NON-STOP URBAN RAIL SYSTEM

Hardial Singh¹

¹Department Of Mechanical Engineering, Amity University Haryana, India.

ABSTRACT

The operational efficiency of conventional urban rail systems is fundamentally constrained by the need to decelerate, stop, and re-accelerate at intermediate stations. These cycles result in significant journey time delays and substantial energy dissipation. This paper presents the design, fabrication, and operational analysis of a "Non-Stop Train" system, a conceptual model that enables continuous train motion through the use of detachable, roof-mounted passenger pods. As the train transits a station, it engages with a stationary pod on an elevated platform, facilitating simultaneous passenger boarding and alighting without halting. A functional, scaled prototype was constructed, featuring a main track, an inclined transfer track, and an automated circuit breaker mechanism. Performance metrics were quantified, revealing a 14.7% speed reduction during the transfer phase—a minor trade-off against the elimination of all stationary time. The study concludes that this system presents a viable paradigm for future urban transit, offering profound benefits in journey time reduction and energy conservation, though significant engineering challenges remain for full-scale implementation.

Keywords: Non-Stop Train, Urban Mobility, Passenger Transfer Pod, Energy Efficiency, Rapid Transit, Prototype Validation, Rail Innovation

1. INTRODUCTION

Rapid urbanization has placed unprecedented strain on public transportation infrastructure worldwide. Traffic congestion leads to economic losses, environmental degradation, and diminished quality of life for commuters [1]. While metro rail systems are a partial solution, their efficiency is inherently limited by station dwell times and the associated energy-intensive cycles of braking and acceleration [2]. Each stop not only adds minutes to a journey but also consumes energy that is wasted as heat during braking.

Figure 1: Nonstop train track

Figure 2: Design of upper track

This research investigates a radical alternative: a rail system that maintains continuous motion. Inspired by a conceptual design from Chen Jianjun, this project develops a practical implementation using a roof-based pod transfer system. Unlike prior "moving platform" concepts that require synchronized vehicles [3], this design utilizes a fixed elevated platform, potentially simplifying infrastructure. This paper details the engineering design, construction, and performance evaluation of a working prototype, specifically addressing the pod attachment/detachment mechanism previously identified as a critical challenge.

2. LITERATURE REVIEW

The pursuit of efficiency in rail transport has driven evolution from steam to electric and magnetic levitation systems [4]. High-speed rail, epitomized by the Japanese Shinkansen, demonstrates the high value placed on inter-city travel time [5]. However, within metropolitan areas, the necessity for frequent stops negates much of this speed advantage.

Research into non-stop systems is nascent. The most prominent related concept is the "Moving Platform" by Priestmangoode, which proposed synchronizing a tram's speed with a main train for side-by-side docking [3]. While innovative, this requires complex control systems and extensive track infrastructure for the feeder vehicles. The system proposed herein builds on this transfer principle but diverges significantly by employing a static elevated platform and a vertical transfer process, centralizing the complexity onto the train itself rather than the network.

3. PROPOSED SYSTEM AND WORKING PRINCIPLE

3.1. System Architecture

The Non-Stop Train system operates on a cyclic process involving a perpetually moving train and interchangeable passenger pods at stations:

- Pre-Boarding:** Passengers assemble in a pod on an elevated station platform.
- Pod Capture:** The train approaches and slows marginally. A docking mechanism on the train's roof engages with and securely locks onto the stationary pod.
- In-Transit Transfer:** Incoming passengers descend into the train via an internal staircase. Simultaneously, outgoing passengers ascend into a dedicated disembarkation pod at the train's rear.
- Pod Release:** At the next station, the rear pod, now containing alighting passengers, is decoupled and deposited onto the platform. The train, having already collected a new boarding pod at the front, continues unimpeded.

3.2. Prototype Implementation

The working principle was validated through a physical model governed by fundamental physics and a simple control system:

- Inclined Plane Mechanics:** The upper transfer track was set at a 60° incline. As the train-mounted pod engaged, the effective velocity component along the incline was reduced to $v_{\text{effective}} = v_{\text{train}} \times \cos(60^\circ)$, ensuring a controlled, gradual ascent and descent.
- Automated Stopping Mechanism:** A custom circuit breaker at the platform's end acted as a limit switch. Upon contact, it opened the circuit to the pod's drive motor, ensuring a precise and repeatable stop.

4. DESIGN AND CONSTRUCTION

A 1:1 scale model was fabricated to test the concept's feasibility (see Figures 1 & 2 for track design).

4.1. System Components:

- Track System:** A dual-loop configuration with a total length of 6.48 m, comprising two straight sections (3048 mm total) and two D-shaped arcs (1092.2 mm outer diameter).
- Upper Transfer Track:** A 1066.8 mm long track inclined at 60° for pod transfer.
- Propulsion & Rolling Stock:** A 12V DC gear motor (200 RPM) provided traction. The train coaches and detachable pod were constructed from Medium-Density Fibreboard (MDF) for ease of fabrication.
- Power Transmission & Control:** Spur gears ensured efficient torque transmission. A 9V battery and the aforementioned circuit breaker formed the core of the control system.

5. RESULTS AND ANALYSIS

The prototype consistently demonstrated successful pod detachment and docking while the main train maintained motion. Quantitative performance data is summarized in Table 1.

Table 1: Prototype Performance Metrics

Parameter	Without Pod Transfer	With Pod Transfer	Change
Lap Time	19 s	22 s	+15.8%
Average Speed	0.34 m/s	0.29 m/s	-14.7%

Calculated Speeds:

- Speed without load: $6.48 \text{ m} / 19 \text{ s} = 0.34 \text{ m/s}$
- Speed with load: $6.48 \text{ m} / 22 \text{ s} = 0.29 \text{ m/s}$

The observed 14.7% speed reduction is attributed to the increased inertial load and the energy conversion required to lift the pod against gravity. This represents the direct energy cost of the transfer operation.

6. DISCUSSION

6.1. Implications for Efficiency

The minor speed reduction during transfer is a critical trade-off. In a conventional system with 30 stations, assuming 30-second stops, **15 minutes of stationary time** is incurred per trip. When deceleration and acceleration phases are included, this penalty exceeds 30 minutes. The Non-Stop system eradicates this penalty entirely. The energy savings are twofold: 1) the elimination of kinetic energy loss through friction braking, and 2) the avoidance of the high-torque power demand required for re-acceleration from rest [6]. The prototype's results suggest that the energy cost of the transfer maneuver is far less than the cumulative energy wasted in a stop-start cycle.

6.2. Scalability and Future Challenges

While the prototype confirms mechanical viability, full-scale implementation presents formidable challenges:

- **Safety and Reliability:** This is the paramount concern. Systems would require failsafe magnetic or mechanical locks, redundant proximity sensors (LIDAR, ultrasonic), and robust emergency braking protocols [7].
- **Structural and Power Systems:** The train's roof must be engineered to support the dynamic loads of a loaded pod. Power delivery must be sufficient to minimize speed dips, likely requiring high-voltage electrification and advanced motor control.
- **Human Factors and Flow:** Passenger capacity and transfer time are crucial. The design of wide, stable staircases and crowd management protocols will dictate the minimum operational headway between trains. Simulation tools like Legion or AnyLogic would be essential for modeling this flow [8].

7. CONCLUSION

This study successfully translated the conceptual Non-Stop Train into a functioning prototype, validating its core operational principle. The system demonstrates a compelling potential to revolutionize urban rail by decoupling passenger exchange from train movement, thereby offering transformative savings in journey time and energy consumption.

Future work must transition from proof-of-concept to pre-commercial development. Key research directions include:

1. Developing a larger-scale, sensor-instrumented prototype to study dynamics and control algorithms.
2. Conducting detailed finite element analysis (FEA) on the pod-train coupling mechanism and computational fluid dynamics (CFD) for aerodynamic effects at high speed.
3. Performing a comprehensive techno-economic analysis to assess viability against conventional and other emerging transit systems like Hyperloop [9].

8. REFERENCES

- [1] Litman, T. (2013). Transportation and Public Health. *Annual Review of Public Health*, 34, 217-233.
- [2] González-Gil, A., Palacin, R., & Batty, P. (2014). Sustainable urban rail systems: A review of energy efficiency and recovery technologies. *Transportation Research Part A: Policy and Practice*, 67, 1-16.
- [3] Priestmangoode. (2012). Moving Platforms. Retrieved from <https://www.priestmangoode.com/project/moving-platforms/>
- [4] Thompson, K. (2015). The History and Future of Rail Transport. In J. A. Black (Ed.), *The Routledge Companion to Rail Development*.
- [5] Hood, C. P. (2006). *Shinkansen: From Bullet Train to Symbol of Modern Japan*. Routledge.
- [6] Rochard, B. P., & Schmid, F. (2000). A review of methods to measure and calculate train resistances. *Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit*, 214(4), 185-199.
- [7] Cardenas, J. A., et al. (2021). Safety-Critical Systems for Autonomous Rail Transport. *IEEE Transactions on Intelligent Transportation Systems*, 22(8), 4671-4682.
- [8] Daamen, W., & Hoogendoorn, S. P. (2012). Experimental research of pedestrian walking behavior. *Transportation Research Record*, 1828(1), 20-30.
- [9] Musk, E. (2013). Hyperloop Alpha. SpaceX.