

A REVIEW ON FORMULATION AND EVALUATION OF ENTERIC COATED TABLETS OF PANTOPRAZOLE

Dhanki Vedant Mahesh Bhai¹, Mrs. Deeksha Bhojak², Dr. Revathi A Gupta³

^{1,2,3}IOP, Dr. APJ Abdul Kalam University, Indore (MP), India.

DOI: <https://www.doi.org/10.58257/IJPREMS43790>

ABSTRACT

Pantoprazole is a P.P.I., belongs to group of benzimidazole, Pantoprazole sodium were prepared by direct compression method using different concentration of, microcrystalline cellulose as filler, mannitol and dicalcium phosphate as diluents, crosscarmellose sodium as disintegrating agents, magnesium stearate and talc was used as a glidant and lubricant respectively. Direct compression is economic compare to wet granulation since it requires fewer unit operations. This means less equipment, lower power consumption, less space, less time and less labour leading to reduced production cost of tablets. The prepared tablets were evaluated for hardness, weight variation, friability and drug content uniformity and it was found that the results comply with official standards. The prepared tablets were coated using enteric coating polymer such as cellulose acetate phthalate, Eudragit L100 and by dip coating method. The in vitro release was studied using acidic buffer pH 1.2 and phosphate buffer pH 6.8. Prepared all batch's C2F9 was found best, with hardness 5.60 ± 0.24 (Kg/cm²), drug content $99.08 \pm 0.35\%$), disintegration time 7.02 ± 0.21 (min), and percentage cumulative drug released which started after 120 min and reached 99.72 after 180 min. Stability studies indicated that the developed tablets were stable and retained their pharmaceutical properties at room temperature and 40°C / 75% RH for a period of 3 month.

Keywords: Pantoprazole, Direct compression, Tablets.

1. INTRODUCTION

More than 50% of pharmaceutical products are orally administered for several reasons. This route of administration is considered as the most widely used route as it offers advantages like ease of administration, versatility, patient compliance and accurate dosing. Undesirable taste is one of the important formulation problems that are encountered with such oral product. The stomach is continuous with the oesophagus at the cardiac sphincter and with the duodenum at the pyloric sphincter. It has two curvatures. The stomach is divided into three regions: the fundus, the body and the antrum. At the distal end of the pyloric antrum is the pyloric sphincter, guarding the opening between the stomach and the duodenum. When the stomach is inactive the pyloric sphincter is relaxed and open and when the stomach contains food the sphincter is closed.

Gastric Defenses Against Acid - The extremely high concentration of H⁺ in the gastric lumen requires robust defense mechanisms to protect the esophagus and the stomach. The primary esophageal defense is the lower esophageal sphincter, which prevents reflux of acidic gastric contents into the esophagus. The stomach protects itself from acid damage by a number of mechanisms that require adequate mucosal blood flow, perhaps because of the high metabolic activity and oxygen requirements of the gastric mucosa. One key defense is the secretion of a mucus layer that protects gastric epithelial cells. Gastric mucus is soluble when secreted but quickly forms an insoluble gel that coats the mucosal surface of the stomach, slows ion diffusion, and prevents mucosal damage by macromolecules such as pepsin.

Pathophysiology of peptic ulcer

Classical causes of ulcers (tobacco smoking, blood groups, spices and a large array of strange things) are of relatively minor importance in the development of peptic ulcers. A major causative factor (90% of gastric and 75% of duodenal ulcers) is chronic inflammation due to Helicobacter pylori, a spirochete that inhabits the antral mucosa and increases gastric production. Gastric, in turn, stimulates the production of gastric acid by parietal cells.

Smoking leads to, atherosclerosis and vascular spasms causing vascular insufficiency and promoting the development of ulcers through ischemia. A family history is often present in duodenal ulcers, especially when blood group O is also present. Inheritance appears to be unimportant in gastric ulcers⁹.

Gastroesophageal reflux disease (GERD)

It is a very common problem presenting as 'heartburn', acid eructation, sensation of stomach contents coming back in foodpipe, especially after a large meal, aggravated by stooping or lying flat. Some cases have an anatomical defect (hiatus hernia) but majority are only functional (LES relaxation in the absence of swallowing). Repeated reflux of acid gastric contents into lower one third of esophagus causes esophagitis, erosions, ulcers, pain on swallowing, dysphasia strictures, and increases the risk of esophageal carcinoma¹⁰.

Epidemiology

Gastroesophageal reflux disease occurs in both adults and children. Although mortality associated with GERD is rare (1 death per 100,000 patients), GERD symptoms have a greater impact on quality of life than do duodenal ulcers, untreated hypertension, mild congestive heart failure, angina, or menopause. The true prevalence and incidence of GERD

is difficult to assess because (a) many patients do not seek medical treatment, (b) symptoms do not always correlate well with severity of disease, and (c) there is no standardized definition or universal gold standard method for diagnosing the disease.

Treatment of acid-related diseases

Antacids

Antacids are alkali preparations that neutralize hydrochloric acid in the stomach. Antacids can contain aluminium, magnesium, calcium or combined substances. Antacids are indicated for dyspepsia, GERD, reflux oesophagitis and gastritis. Their onset of action is fast, but they require frequent administration (4 to 6 times a day) because of their short duration of action.

H2-receptor antagonists

Parietal cells in the stomach express receptors for acetylcholine, gastric and histamine. Stimulation of these receptors results in gastric acid production. H2-receptor antagonists (H2RAs) inhibit acid production by reversibly competing with histamine for binding to H2-receptors on the parietal cells. Four different H2RAs are available: cimetidine, famotidine, nizatidine and ranitidine. H2RAs are indicated for reflux-oesophagitis, ulcer duodeni, ulcer ventriculi, prevention of recurrent peptic ulcers and the treatment of NSAID related ulcers. These agents are primarily effective in decreasing basal acid production and nocturnal acid breakthrough. They are however less effective in controlling food-stimulated acid secretion during daytime. In general, H2RAs are administered twice a day. Although H2RAs have reasonable efficacy, patients develop tolerance in particular with continuous therapy.

Proton pump inhibitors

Proton pump inhibitors (PPIs) suppress gastric acid secretion by specific inhibition of the H⁺/K⁺- ATPase in the gastric parietal cell. This process starts with absorption of the PPI in the parietal cell. PPIs are weak bases, so protonation takes place in the acidic region of the secretory canalculus of the parietal cell.

2. MATERIAL AND METHOD

Table 1: LIST OF CHEMICALS USED

SL. No.	Materials	Manufacturer / Supplier
1	Acetone	SD Pharma, Mumbai, India
2	Calcium phosphate	Fine Chem Industries, India
3	Disodium hydrogen phosphate	Fine Chem Industries, India
4	Potassium dihydrogen phosphate	Cipla Pharma, Mumbai, India
5	Cellulose acetate phthalate	SD Pharma, Mumbai, India
6	Micro crystalline cellulose	Cipla Pharma, Mumbai, India
7	Mannitol	Signet Chemical Corporation
8	Croscarmellose sodium	SD Chemical Corporation
9	Pantoprazole sodium sesquihydrate	Signet Chemical Corporation
10	Talc	Spectrochem Pvt. Ltd. Mumbai.
11	Magnesium stearate	Spectrochem Pvt. Ltd. Mumbai.
12	Eudragit L-100	Sd fine Chem. Ltd., Mumbai, India.
13	Potassium dihydrogen Phosphate	Spectrum reagent and chemicals Pvt. Ltd., India.
14	Hydrochloric acid	Swastik Pharmaceuticals, Mumbai,

		India.
--	--	---------------

Table 2: LIST OF EQUIPMENT USED

SL. NO	Equipment	Manufacturer / Supplier
1	Rotary tablet punching machine	Ridhi Pharma machinery, Ahmedabad, India
2	UV Spectrophotometer	Shimadzu 1800, Japan
3	Digital Electronic Balance	Citizen, India.
4	Monsanto Hardness tester	Labtech, India
5	Friability apparatus	Ketan, Koshish Industries, India
6	Digital pH meter	Hanna, India
7	Vernier calipers	Mitutoyo. Japan
8	Disintegration test apparatus	Electrolab ED-2L, Servewell Industries, India
9	Dissolution test apparatus	Electrolab TDT-08L Servewell Industries, India
10	FTIR Spectrophotometer	Bruker, Japan.
11	Hot air oven	Servewell Industries, India

Preparation of powder blend

Pantoprazole sodium sesquihydrate powder blend for tabletting were prepared by direct compression method. Specified quantity of pantoprazole, croscarmellos sodium, mannitol, calcium phosphate, and MCC were weighed accordingly and transferred in a mortar and pestle and mixed thoroughly. The powder was passed through sieve no 80 to obtain the granules. The specified quantity of magnesium stearate and talc were finally added and mixed for the compression of tablets.

Preparation of pantoprazole sodium tablets

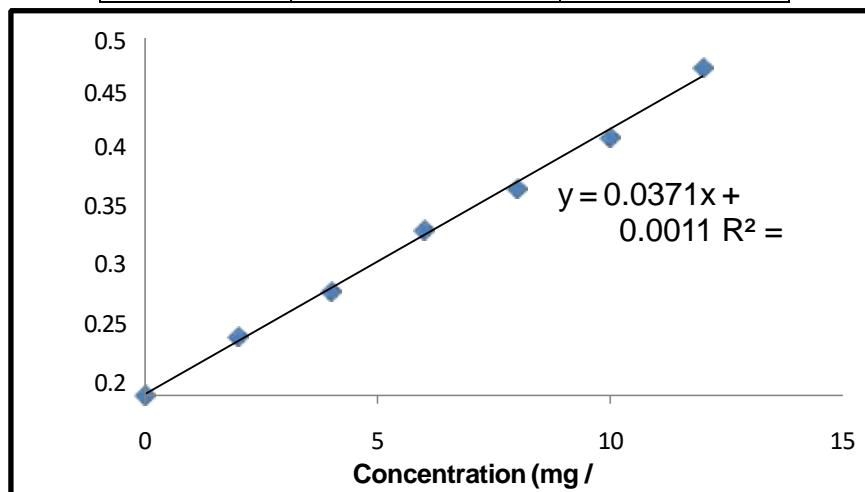
An ideal mixture of granules were directly punched into tablets weighing about 200 mg containing 40 mg of pantoprazole sodium sesquihydrate, using rotary tablet compression machine (Riddhi 10 stn mini tablet press RDB4-10, Rimek, Ahmedabad, India), using 8 mm diameter concave punches. The different batches of pantoprazole tablets were collected and stored in air tight containers.

Table 3: Composition of pantoprazole sodium enteric coated sodium tablets

Composition	F1	F2	F3	F4	F5	F6	F7	F8	F9
Pantoprazole sodium (mg)	40	40	40	40	40	40	40	40	40
Croscarmellose sodium (mg)	2	4	6	2	4	6	2	4	6
Microcrystalline cellulose(mg)	27	25	23	27	25	43	80	50	23
Mannitol (mg)	50	75	100	40	85	80	43	50	75
Dicalcium phosphate (mg)	75	50	25	85	40	25	75	50	50
Talc (mg)	2	2	2	2	2	2	2	2	2
Magnesium stearate (mg)	4	4	4	4	4	4	4	4	4
Total weight (mg)	200	200	200	200	200	200	200	200	200

Table 4: Composition of coating solution

Ingredients	Quantity (%)
Cellulose acetate phthalate/ Eudragit L100	6.0 / 8.0
PEG	1.5
Acetone	59.4


Enteric coating of pantoprazole sodium compressed tablets by dipping method

The compressed tablets were coated with enteric coating polymer (Eudragit L100 or cellulose acetate phthalate) solution by dipping method. Desired tablet coating continued the dipping and weight gain was achieved. The coated tablets were studied for its weight variation, thickness, uniformity of drug content and *in vitro* dissolution study.

3. RESULTS AND DISCUSSIONS

Table 5: Calibration data of pantoprazole sodium in 0.1N HCl (pH 1.2)

SL. NO.	Concentration (mg /mL)	Absorbance* (nm)
1	0	0
2	2	0.082+0.0005
3	4	0.145+0.0015
4	6	0.231+0.0101
5	8	0.289+0.0023
6	10	0.361+0.0025
7	12	0.459+0.0047

Figure 1: Standard graph of pantoprazole sodium in 0.1N HCl (pH 1.2)

Table 6: Calibration data of pantoprazole sodium in phosphate buffer (pH 6.8)

SL. NO.	Concentration (mg /mL)	Absorbance*(nm)
1	0	0
2	2	0.085+0.0040
3	4	0.149+0.0036
4	6	0.243+0.0015
5	8	0.305+0.0075
6	10	0.373+0.0051
7	12	0.468+0.0020

*Mean \pm SD, n = 3

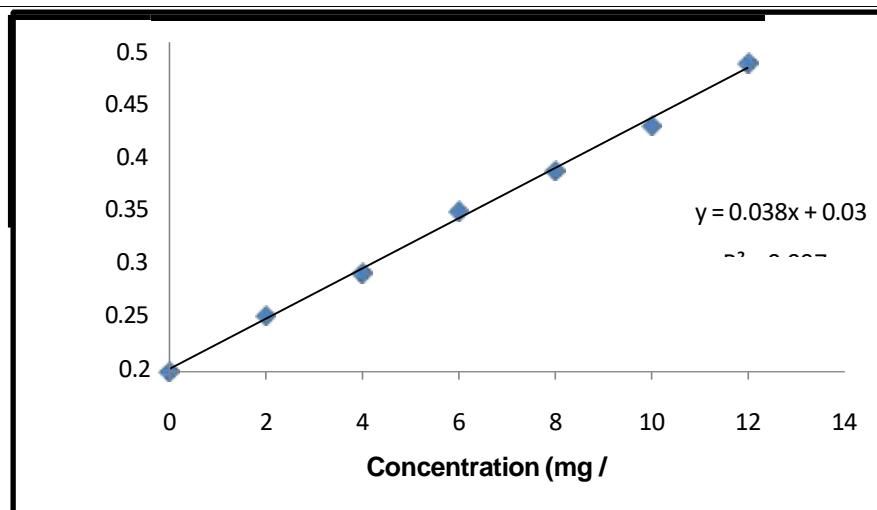


Figure 2: Standard graph of pantoprazole sodium in phosphate buffer (pH 6.8)

Table 7:

Formulation Code	Parameter				
	Bulk density (gm/mL) *	Tapped density (gm/mL) *	Carr's Index (%)*)	Hausner's ratio*	Angle of repose (Θ)*
F1	0.357±0.03	0.384±0.05	7.03±0.09	1.075±0.04	28.31±0.26
F2	0.312±0.04	0.335±0.02	6.86±0.15	1.073±0.05	27.20±0.14
F3	0.306±0.03	0.326±0.03	6.13±0.12	1.065±0.02	29.13±0.34
F4	0.312±0.03	0.334±0.06	6.58±0.14	1.070±0.06	26.13±0.26
F5	0.306±0.03	0.334±0.05	8.38±0.17	1.091±0.08	26.78±0.18
F6	0.384±0.04	0.429±0.05	10.48±0.20	1.117±0.07	25.79±0.24
F7	0.358±0.05	0.385±0.04	7.01±0.13	1.075±0.03	29.52±0.14
F8	0.286±0.05	0.313±0.04	8.62±0.07	1.094±0.03	26.95 ±0.15
F9	0.348±0.08	0.328±0.05	5.74±0.13	1.06±0.08	26.13±0.26

Post compression parameters of pantoprazole sodium core tablet

The pantoprazole tablets were prepared by direct compression method and were evaluated for their hardness, weight variation, content uniformity, friability and *in vitro* drug release (Table 9). Hardness has to be controlled to ensure that the product is firm enough to withstand handling without breaking or crumbling and not so hard that the disintegration time is unduly prolonged. The average hardness of the tablets to be in range was found within 4.93 ± 0.15 to 6.20 ± 0.35 Kg / cm². Friability value which also affected by the hardness value of tablets should be in the range 1% limits, which is the usual friability range of tablets. The friability of the prepared tablets was found less than 1% w/w. The drug content uniformity of pantoprazole sodium present in tablets formulation ranged from 96.28 ± 0.15 to $100.34 \pm 0.13\%$. The average weight found 198 ± 0.15 to 206 ± 0.24 mg. Disintegration time varied between 11.48 ± 0.15 to 5.38 ± 0.23 , hence all shows favorable result.

Table 8: Post compression parameters of pantoprazole sodium core tablets

Formulation Code	Parameter				
	Hardness (Kg/cm ²)*	Friability (%)*)	Weight variation (mg) *	Drugcontent (%)*)	Disintegration time(min) *
1	5.80 ± 0.12	0.69 ± 0.015	199 ± 0.12	96.28 ± 0.15	10.6± 0.62
F2	5.56 ± 0.24	0.51 ± 0.017	206 ± 0.24	97.62 ± 0.27	8.26± 0.56
F3	5.83 ± 0.08	0.48 ± 0.014	201 ± 0.17	99.51 ± 0.36	5.38± 0.23

F4	4.93 ± 0.15	0.64 ± 0.015	208 ± 0.20	98.17 ± 0.16	11.48 ± 0.15
F5	5.73 ± 0.25	0.71 ± 0.016	203 ± 0.16	98.92 ± 0.42	9.32 ± 0.18
F6	5.12 ± 0.34	0.68 ± 0.026	206 ± 0.14	100.34 ± 0.13	6.13 ± 0.25
F7	5.66 ± 0.17	0.54 ± 0.026	199 ± 0.22	98.50 ± 0.48	10.54 ± 0.43
F8	6.20 ± 0.35	0.49 ± 0.025	204 ± 0.18	98.41 ± 0.34	9.12 ± 0.71
F9	5.60 ± 0.24	0.42 ± 0.018	198 ± 0.15	99.08 ± 0.35	6.02 ± 0.21

* Mean ± SD, n=3

Table 9: Physicochemical evaluation parameters of enteric coated tablets

Polymer	Batch Code	Parameter		
		Weight Variation (mg) *	Hardness Kg/cm2*	Drugcontent (%)*)
CAP	C1F3	211 ± 0.035	6.5 ± 0.15	96.75 ± 0.14
	C2F3	214 ± 0.016	5.9 ± 0.24	93.65 ± 0.35
	C1F9	212 ± 0.006	5.4 ± 0.09	94.45 ± 0.26
	C2F9	210 ± 0.024	6.3 ± 0.14	98.54 ± 0.12
Eudragit L 100	E1F3	214 ± 0.021	5.5 ± 0.16	93.47 ± 0.23
	E2F3	213 ± 0.012	6.0 ± 0.06	94.56 ± 0.14
	E1F9	215 ± 0.015	6.5 ± 0.31	98.27 ± 0.45
	E2F9	211 ± 0.024	5.7 ± 0.20	96.35 ± 0.12

*Mean±SD, n = 3

Table 10: *In vitro* drug release of pantoprazole sodium (C1F3)

Time (min)	Absorbance	Conc. (µg/mL)	Conc. in 900 mL (mg /mL)	Loss	Cumulative loss	Cumulative drugreleased	Cumulative percentage drug released *
0	0	0	0	0	0	0	0
15	0	0	0	0	0	0	0
30	0	0	0	0	0	0	0
45	0	0	0	0	0	0	0
60	0	0	0	0	0	0	0
75	0	0	0	0	0	0	0
90	0	0	0	0	0	0	0
105	0.024	0.6469	5.822	0	0	5.822	14.62 ± 0.52
120	0.06	1.6172	14.555	0.0064	0.0064	14.561	36.58 ± 0.40
135	0.091	2.3884	21.496	0.0161	0.0226	21.518	54.05 ± 0.90
150	0.121	3.1758	28.582	0.0238	0.0465	28.629	71.91 ± 0.39
165	0.142	3.7270	33.543	0.0317	0.0782	33.621	84.46 ± 0.17
180	0.162	4.2519	38.267	0.0372	0.1155	38.383	96.42 ± 0.40

* Mean±SD, n = 3

Table 11: Stability studies of cellulose acetate phthalate coated tablet formulation C2F9

Evaluation parameters	Observation in month			
	Initial	1st month	2nd month	3rd month

Physical Appearance	whitecolor tablets	No change	No change	No change
Hardness (Kg / cm²) *	6.3 ± 0.14	6.2 ± 0.56	6.2 ± 0.64	6.2 ± 0.26
Drug Content (%)*)	98.54 ± 0.12	98.36 ± 0.52	98.16 ± 0.36	98.07 ± 0.28

*Mean ± SD, n=3

4. CONCLUSION

The aim of the present study was to formulate and evaluate of enteric coated pantoprazole sodium sesquihydrate tablets by using manitol, dicalcium phosphate, microcrystalline cellulose, crosscarmelose sodium, magnesium stearate and talc.

FT-IR study was carried out to check any possible interactions between the drug and the excipients manitol, dicalcium phosphate, microcrystalline cellulose, crosscarmelose sodium, Pantoprazole sodium sesquihydrate were prepared by direct compression method using different concentration of, Avicel PH (MCC) as filler, mannitol and dicalcium phosphate as diluents, croscarmellose sodium as disintegrating agents, magnesium stearate and talc was used as a glidant and lubricant respectively. The granules were evaluated for the precompression parameters like angle of repose, bulk density, tapped density and compressibility index. The flow characteristics of the granules were assessed by determining their angle of repose and Carr's Index. The values of compressibility index and angle of repose signify good flowability of the granules for all the batches. This shows that the granules had smooth flow properties ensuring homogenous filling of the die cavity during the compression (punching) of tablets.

Coating has been done for the selected formulation from the proposed formulation 1-Coating materials like CAP and Eudragit L100 with the difference concentration.

The *in vitro* dissolution studies were carried out for compressed and coated tablets using USP dissolution apparatus type II. The cumulative percentage of drug release from the tablets varied and depends on the type of polymer used and its concentration.

Formulation 3 and formulation 9 was selected for the coating. CAP and Eudragit L 100 was used for the coating polymer. In this present study coating material was used with 6 and 8 percentage on the above-mentioned formulation.

5. REFERENCES

- [1] Anne W, Allison G, in Ross, Wilson. Anatomy and Physiology in Health and Illness. 9th Ed: Churchill Livingstone, Spain; 2001; 296.
- [2] Rang HP, Dale MM, Ritter JM, Morre PK . Pharmacology. 5th Ed: Churchill Livingstone, 2005; 374.
- [3] Laurence L, John S, Keith L, in Goodman & Gilman's The pharmacological basis of therapeutics. 11th Ed, McGraw-Hill, 2006: 623- 634.
- [4] Heinz L, Albrecht Z, Klaus M. Color Atlas of Pharmacology. 2nd Ed. Thieme Stuttgart, New York · 2000;166
- [5] Health encyclopedia diseases and conditions. <http://www.healthscout.com>.
- [6] <http://familydoctor.org/online/famdo.con/home/common/digestive/disorders/186.html>. (Accessed on 10/02/2011)
- [7] <http://www.emedmag.com/html/pre/gic/consults/071503.asp>. (Accessed on 12/02/2011)
- [8] http://en.wikipedia.org/wiki/Peptic_ulcer. (Accessed on 10/02/2011)
- [9] http://www.experiencefestival.com/a/Peptic_ulcer_Pathophysiology. (Accessed on 03/10/2012)
- [10] Tripathi KD. Essential of Medical Pharmacology. 5th Ed. Jaypee Brothers Medical Publishers (P) Ltd. New Delhi: 2003; 631
- [11] Joseph T, Robert L, Gary C, Gary R, Barbara G, L. Michael. Pharmacotherapy: A Pathophysiologic Approach, 6th Ed. 613-615.
- [12] Nicole GM. Clinical effects of proton pump inhibitors. Erasmus University. 2010;1-2.
- [13] Richard F, Michelle A, Luigi X. Lippincott's Illustrated Reviews: Pharmacology, 4th Ed. Lippincott Williams & Wilkins. 2009; 331.
- [14] Bertram GK, Susan B. Masters, Anthony J. Trevor. Basic & Clinical Pharmacology, 11th Ed. by The McGraw-Hill Companies, 2009; 1479.
- [15] Jayesh P, Manish R. Tablet Formulation Design And Manufacture: Oral Immediate Release Application. Pharma Times April 2009; 41 (4): 22.
- [16] Karl T, Karoline B, Enteric coated hard gelatin capsules. Department of Pharmaceutical Technology, Ludwig

Maximilian University, 8000 Munich 2, Germany. Capsugel Library. 1-3.

- [17] Liberman, Lachman L. The Theory and Practice of Industrial Pharmacy.3rd Ed, Verghese Publication House.1987; 293.
- [18] Neelam DK, Prafulla SC, Rajesh J. Innovations In Tablet Coating Technology: A Review. IJABPT. Jan-Mar - 2011; 2(1): 214-217.
- [19] Salam W. Dumitru L. Directly Compressible Adjuvants- A Pharmaceutical Approach. Farmacia. 2008; Vol LVI 6:591-593.
- [20] Rabia B, Muhammad H, Nousheen A. Formulation Development And Optimization Of Ibuprofen Tablets By Direct Compression Method. Pak. J. Pharm. Sci. April 2008; 21(2) : 113.