

INTERNATIONAL JOURNAL OF PROGRESSIVE

RESEARCH IN ENGINEERING MANAGEMENT

AND SCIENCE (IJPREMS)

Vol. 03, Issue 09, September 2023, pp : 238-239

e-ISSN :

 2583-1062

Impact

 Factor :

5.725
www.ijprems.com

editor@ijprems.com

@International Journal Of Progressive Research In Engineering Management And Science Page | 238

A ROBUST BISECTION METHOD FOR ROOT FINDING IN C

Dr. Jyothi. G1, Dr. M. Dhanashmi2, K. Bhanu Priya3, P. Sarayu4, T. Sai Durga5, N. Keerthi6,

Sk. Nasrin7, K. Divya8
1,2,3Lecturers, Department of Mathematics, Sri Durga Malleswara Siddhartha Mahila Kalasala, Vijayawada,

A.P, India.
4,5,6,7,8Students, Mathematics, Sri Durga Malleswara Siddhartha Mahila Kalasala, Vijayawada, A.P, India.

DOI : https://www.doi.org/10.56726/IRJMETS32045

ABSTRACT

This is also an iterative method. To find root repeatedly bisect an interval and then selects a subinterval in which a root

must lie for further processing. Algorithm is quite simple and robust, only requirement is that initial search interval

must encapsulates the actual root.

1. INTRODUCTION

Bisection method is a simple iteration method to solve equation. This method is also known as Bolzano method of

successive bisection. Some times it is referred to as half interval method. Suppose we know an equation of the form

f(x)=0 has exactly one real root between two real numbers 𝑥0, 𝑥1. The number is chosen such that 𝑓(𝑥0)𝑎𝑛𝑑 𝑓(𝑥1)

will have opposite signs. Let us bisect the interval [𝑥0, 𝑥1] into two half intervals and find the mid point 𝑥2 =
𝑥0+𝑥1

2
 .

If 𝑓(𝑥2) = 0 then 𝑥2 is a root. If 𝑓(𝑥1)𝑎𝑛𝑑 𝑓(𝑥2) have same sign then the root lies between 𝑥0 𝑎𝑛𝑑 𝑥2 . The interval

is taken as [𝑥0, 𝑥2] . Otherwise the root lies in the interval [𝑥2, 𝑥1] . Repeating the process of bisection we obtain

successive sub intervals which are smaller. At each iteration, we get the mid point as a better approximation of the

root. This process is terminated when interval is smaller than the desired accuracy. This is also called as “Interval

Halving Method”. Given a function f(x) continuous on an interval [a,b] and f(a).f(b)<0

Do 𝑐 =
(𝑎+𝑏)

2

If f(a)*f(c)<0 then b=c

Else a=c

While (none of the convergence criteria 𝑐1, 𝑐2 𝑜𝑟 𝑐3 is satisfied)

Where the criteria for convergence are

 𝑐1 : Fixing a priori the total number of bisection iterations N i.e, the length of the interval or the maximum error after

N iterations in this case is less than
|𝑏−𝑎|

2𝑁
.

𝑐2 : By testing the condition |𝑐𝑖 − 𝑐𝑖−1| less than some tolerance limit, say epsilon, fixed threshold.

𝑐3 : By testing the condition |𝑓(𝑐𝑖)| less than some tolerance limit alpha again fixed threshold.

2. C IMPLEMENTATION

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#define f(x)((x*x*x)-18)

int main()

float a=0,b=0, error=0,m, mold;

printf("Input Interval:");

int i=0;

scanf("%f %f",&a,&b);

if((f(a)*f(b))>0)

{

printf("Invalid Interval Exit!");

exit(1);

}

else if(f(a)==0||f(b)==0)

INTERNATIONAL JOURNAL OF PROGRESSIVE

RESEARCH IN ENGINEERING MANAGEMENT

AND SCIENCE (IJPREMS)

Vol. 03, Issue 09, September 2023, pp : 238-239

e-ISSN :

 2583-1062

Impact

 Factor :

5.725
www.ijprems.com

editor@ijprems.com

@International Journal Of Progressive Research In Engineering Management And Science Page | 239

{

printf("Root is one of interval bounds exit(0) root is %f \n",f(0)==0?a:b);

}

printf("Ite\ta\t\tb\t\tm\t\tf(m)\t\terror\n");

do

{

mold=m;

m=(a+b)/2;

printf("%2d\t%4.6f\t%4.6f\t%4.6f\t%4.6f\t",i++,a,b,m,f((m)));

if(f(m)==0)

{

printf("\n Root is %4.6f",m);

}

else if ((f(a)*f(m))<0)

{

b=m;

}

else a=m;

error=fabs (m-mold);

if(i==1)

{

printf("\n");

}

else

printf("%4.6f\n",error);

}

while(error>0.00005);

printf("Approximate Root is %4.6f",m);

return 0;

3. OUTPUT

4. CONCLUSION

Overall, the paper provides a clear explanation of the bisection method and offers a practical implementation in C,

showcasing its effectiveness in finding approximate roots of equations within specified intervals.

5. REFERENCES

[1] https://www.codewithc.com

[2] Introduction to Numerical Analysis with C programs by A Mate-2002

[3] C Programming and Numerical Analysis.

