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ABSTRACT

The Naive Bayes classifier assumes that characteristics are independent of class, which considerably simplifies
learning. While independence is often a bad assumption, naive Bayes actually frequently competes effectively with
more advanced classifiers. Our main objective is to comprehend the features of the data that influence naive Bayes'
performance. Our methodology makes use of Monte Carlo simulations, which enable a methodical investigation of
categorization accuracy over a number of classes of randomly produced problems. We examine how the distribution
entropy affects the classification error and demonstrate that low-entropy feature distributions result in good naive
Bayes performance. Additionally, we show that naive Bayes performs optimally in two contradictory scenarios: fully
independent features (as predicted) and functionally dependent features . Another unexpected finding is that there is
no clear correlation between the degree of feature dependencies—which is defined as the class-conditional mutual
information between the features—and the accuracy of naive Bayes. The amount of class information lost as a result
of the independence assumption is a more accurate indicator of naive Bayes correctness.

1. INTRODUCTION

Bayesian classifiers assign the most likely class to a given example described by its feature vector. Learning such
n

classifiers can be greatly simplified by assuming that features are independent given class, that is P(X|C) = © i=
1 where is a feature vector and is a class. Despite this unrealistic assumption, the resulting classifier known as naive
bayes is remarkably successful in practice, often competing with much more sophisticated techniques. Naive Bayes
has proven effective in many practical applications, including text classification, medical diagnosis, and systems
performance management.

The following explains why naive bayes performs well when feature dependencies are present: There is no guarantee
that optimality and zero-one loss (classification error) are related to the appropriateness of the independence
assumption, or the adequacy of the fit to a probability distribution. Instead, if the actual and predicted distributions
concur on the most likely class, an optimal classifier is produced. For instance, demonstrated the prove Naive Bayes
optimality for a number of problem classes, including disjunctive and conjunctive concepts, that have a high degree of

feature dependencies.

But this explanation isn't really informative because it's too broad. In the end, our goal is to comprehend the features
of the data that influence how well Naive Bayes. In contrast to most Naive Bayes research, which evaluates the
algorithm's performance against other classifiers on specific benchmark problems (like UCI benchmarks), our method
makes use of Monte Carlo simulations to enable a more methodical investigation of classification accuracy on
parametric families of randomly generated problems. Furthermore, we are only examining the bias of the naive Bayes
classifier in this analysis—not its variance.

In particular, we presume an unlimited quantity of data (i.e., perfect knowledge of data distribution), which enables us
to distinguish between the error caused by the training sample set and the approximation error (bias) of naive Bayes.

We analyze the impact of the distribution entropy on the classification error, showing that certain almost deterministic,
or low-entropy, dependencies yield good performance of naive Bayes. We show that the error of naive Bayes vanishes
as the entropy H(P(X]|C) approaches zero. Another class of almost-deterministic de pendencies generalizes functional
dependencies between the features.

Particularly, we show that naive Bayes works best in two cases: completely independent features (as expected) and
functionally dependent features. We also show that, surprisingly, the accuracy of naive Bayes is not directly correlated
with the degree of feature de pendencies measured as the class-conditional mutual information between the feature
I1(Xi;Xj|C).

Instead, our experiments re veal that a better predictor of naive Bayes accuracy can be the loss of information that
features contain about the class when assuming naive Bayes model , namely

.I!r([w‘ (x i X._,l)) = IW((“ (‘ ’I'-‘Xj))‘where INB

is the mutual information between features and class under naive Bayes assumption. This paper is structured as
follows. In the next section we provide necessary background and definitions .
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2. WHEN DOES NAIVE BAYES WORK WELL? EFFECTS OF SOME NEARLY-
DETERMINISTIC DEPENDENCIES

In this section, we discuss known limitations of naive Bayes and then some conditions of its optimality and near
optimality, that include low-entropy feature distributions and nearly-functional feature dependencies. We focus first on
concepts with P(C=ijx)=0 or 1 or for anyand (i.e. no noise), which therefore have zero Bayes risk. ), which therefore
have zero Bayes risk. The features are assumed to have finite domains (i -th feature has values), and are often called
nominal. (A nominal feature can be transformed into a numeric one by imposing anorder on its domain.) Our
attention will be restricted to binary classification problems where the class is either 0 or 1. When K>I for some
features, naive Bayes is ableto learn (some) polynomial discriminant functions ; thus, polynomial separability is a
necessary, although not sufficient , condition of naive Bayes optimality for concepts with finite-domain features.
Despite its limitations, naive Bayes was shown to be optimal for some important classes of concepts that have a high

degree of feature dependencies, such as disjunctive and conjunctive concepts. These results can be generalized to
concepts with any nominal features.

3. THEOREM 1

The naive Bayes classifier is optimal for any two-class concept with nominal features that assigns class 0 to exactly
one example, and class 1 to the other examples, with probability 1.

The performance of naive Bayes degrades with increasing number of class-0 examples (i.e., with increasing prior
P(C=0), also denoted P(0)), as demonstrated in Figure la. This figure plots average naive Bayes error computed over
1000 problem instances generated randomly for each value of P(C=0).

The problem generator, called zerobayesrisk, assumes m features (here we only consider two features), each having k
values.

As expected, larger P(C=0) yield a wider range of problems with various dependencies among features. Which result
into increased errors of bayes a closer look at the data shows no other cases of optimality besides P(C=0)=1/N).
Surprisingly, the strength of inter feature dependencies, measured as the class conditional mutual information
I(X1;X2|C), is not a good predictor of naive bayes performance: while average naive bayes error increases
monotonically with P(0), the mutual information is non-monotone, reaching its maximum around P(0)=0.1.

This observation is consistent with previous empirical results on UCI benchmarks that also revealed low correlation
between the degree offeature dependence and relative performance of naive Bayes with respect too other classifiers,
such asC4.5,CN2,andPEBLS. It turns out that the entropy of class-conditional marginal distributions, P(Xi|C), is a
better predictor of naive bayes performance. Intuitively ,low entropy of P(Xi|0) means that most of Os are
“concentrated around” one state.

Indeed plot average H(P(X1|0) in figure la demonstrates that both average error and average entropy increase
monotonically in P(0).

NBerror. 1(X1;X2|C). and H(P(x1[c) vs. P(0) (n=2, m=2. k=10, N=100
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Fig. 3
(a) Results for the generator zerobayes risk (k=10, 1000 instances): average naive bayes error, class conditional
mutual information between features (I(X1|X2|C)), and entropy of marginal distribution ,H(P(X1|0)); the
error bars correspond to the standard deviation of each measurement across 1000 problems instances;
(b) Results for the generator EXTREME: average bayes and naive bayes errors and average [(X1;X2|C);
(c) Results for the generator FUNCI :average difference between naive bayes error and bayes error(=0.336 —
constant for all §), and scaled I(X1;X2_C)(divided by 300)

4. INFORMATION LOSS: A BETTER ERROR PREDICTOR THAN FEATURE
DEPENDENCIES?

As we observed before, the strength of feature dependencies(i.e. the class-conditional mutual information between the
features) ’ignored’ by naive Bayes is not a good predictor of’its classification error. This makes us look for a better
parameter that estimates the impact of independence assumption onclassification. We start with a basic question: which
dependencies between features can be ignored when solving a classification task? Clearly, the dependencies which do
not help distinguishing between different classes, i.e. do not provide any information about the class. Formally, let
I(C;(X1,X2)) be the mutual information between the features and the class given the “true” distribution
P(X1,X2,C),PNB(X1,X2,C)=P(X1|C)P(X2|C)P(C), the naive bayes approximation of P(X1,X2,C).
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Then the parameter I diff=I(C;X1,X2))-INB(C;X1,X2)) measures the
amount of information about the class which is “lost” due tonaive Bayes assumption.

5. CONCLUSIONS

Despite its unrealistic independence assumption, the naive Bayes classifier is surprisingly effective in practice since its
classification decision may often be correct even if its probability estimates are inaccurate. Although some optimality
conditions of naive Bayes have been already identified in thepast , a deeper understanding of data characteristics that
affect the performance of naive Bayes is still required.

Our broad goal is to understand the data characteristics which affect the performance of naive Bayes. Our approach
uses Monte Carlo simulations that allow a systematic study of classification accuracy for several classes of randomly
generated problems. We analyze the impact of the distribution entropy on the classification error, showing that certain
almost- deterministic, or low-entropy, dependencies yield good performance of naive Bayes. Particularly, we
demonstrate that naive Bayes works best in two cases: completely independent features (as expected) and functionally
dependent features (which is surprising). Naive Bayes has its worst performance between these extremes.

Surprisingly, the accuracy of naive Bayes is not directly correlated with the degree of feature dependencies measured
as the class-conditional mutual information between the features. Instead, a better predictor of accuracy is the loss of
information that features contain about the class when assuming naive Bayes model. However, further empirical and
theoretical study is required to better understand the relation between those information-theoretic metrics and the behavior
of naive Bayes.

Further directions also include analysis of naive Bayes on practical application that have almost-deterministic
dependencies, characterizing other regions of naive Bayes optimality and studying the effect of various data parameters on
the naive Bayes error. Finally, a better understanding of the impact of independence assumption on classification can
be used to devise better approximation techniques for learning efficient Bayesian net classifiers, and for probabilistic
inference e.g., for finding maximum-likelihood assignments.
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