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ABSTRACT

More than half of the people in the world eat rice, so it needs to be properly labeled so that growing methods can be
made better and food quality stays high. The normal ways of telling the difference between types of rice are hard to do
and take a long time. CNNs, and more specifically the ResNet-50 design, will be used to carefully put different types of
rice into groups. This is the main goal of the study. A lot of data has been used to show that ResNet-50 is very good at
putting pictures of rice into different groups. This shows that ResNet-50 could be useful in precision farming since it
can quickly and correctly group different types of rice. ResNet-50 could make gardening better and make sure that
everyone in the world has safe food. Getting rid of the need for hard physical work and skewed opinion helps with this.

1. INTRODUCTION

Millions of people around the world consume rice as their main meal, so issues of food security and the long-term
viability of agriculture are very important. Different types of rice need to be put into the right groups for different
farming tasks, like breeding programs, increasing farm output, and increasing rice's market value. But traditional ways
of telling the difference between rice types rest on professional knowledge and human observation, which can take a
long time and lead to mistakes. New advances in machine learning, especially deep learning, and artificial intelligence
(Al) make it more likely that sorting methods used in agriculture will be improved and made more automatic. A powerful
one of these is convolutional neural networks (CNNSs). Because they work better than traditional machine learning
methods, they have changed the way jobs like picture recognition are done. ResNet-50 is different from other CNN
systems because it uses deep structure and leftover links. These traits make it easier to solve the disappearing gradient
problem and help deeper networks learn better. The main point of this study is to see how well the ResNet-50 model
can sort different kinds of rice into different groups. Deep learning was used to look at a very large set of pictures of
rice, which suggests that it could be a good automatic option to more traditional methods. The main goal of the project
is to show that ResNet-50 can correctly identify different types of rice, which will help the field of precision farming
move forward.

Using deep learning methods, especially ResNet-50, it is possible to completely change how different types of rice are
organised. If one use deep learning techniques to figure out what kind of rice it is, one might get better and faster results.
These models get rid of mistakes and biassed decisions made by people. This not only speeds up sorting, but it also
makes the data more accurate and reliable. After that, it will be simpler for people to decide what farming ways to use.
ResNet-50 might be useful for more than just sorting rice varieties. One use could be custom breeding methods that
make crops hardier, multiply, and stay healthy. How much farmers understand about the differences between types of
rice can affect how much more they gather. For instance, they can change when and how much fertiliser and water are
used. Buyers and sellers would be more worried about the authenticity and safety of rice if it were labelled more
correctly. This could make the market value of rice go up. Read this article and use ResNet-50 to learn how to easily
and accurately group different types of rice into groups. Ultimately, the study wants to use deep learning to make
precision farming better. This will not only solve the problem of world food security, but it will also allow for more
environmentally friendly farming methods.

2. RELATED WORK

This area of study has done a lot of work on deep learning and machine learning, especially when it comes to classifying
crops and grains. A lot of standard machine learning methods, like Support Vector Machines (SVMs) and k-Nearest
Neighbors (k-NNs), have relied on features that were designed to accurately classify crops [8]. There is a lot of feature
engineering that goes into these algorithms, though, and they don't always work with new datasets. When it comes to
putting farms into groups, CNNs have totally changed the game. CNNSs can easily create feature representations from
raw image data, which leads to better performance and greater generalizability. Early CNN designs like VGG and
AlexNet showed impressive performance improvements in picture classification tasks. This paved the way for more
progress in the field.
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Brand-new convolutional neural network (CNN) models, like Inception and ResNet, are getting better and better at what
they do. It is special because of learning that keeps going. If they use this method to train very deep neural networks,
they might not have to deal with the disappearing gradient problem. This new design has been shown to work very well
in many areas, such as object identification, face recognition, and medical picture analysis [15]. ResNet-50 has a lot of
uses in agriculture, but it hasn't been used enough, especially to sort different types of rice. Agricultural classification
jobs like identifying food varieties and keeping track of natural factors could be a new area of study because they come
with their own set of problems. ResNet-50 can help.

ResNet-50 gives agricultural experts faster, more flexible, and better options to the old ways of doing things. It could
change the way rice types are grouped [1]. Because it can handle big datasets and easily pull out features from raw rice
pictures, ResNet-50 is a useful tool for precision farming projects. In addition, ResNet-50 changes farming methods in
more ways than just sorting rice. When classification models are powered by ResNet-50, they gather data that could
help with breeding and raise the prices of farm goods. Also, automating sorting tasks could make the jobs of farm
workers easier, which could lead to more efficient and cost-effective operations. Not to add, using ResNet-50 for
agricultural categorization has a lot of promise for bringing state-of-the-art deep learning methods to important problems
like food security, farming sustainability, and economic growth [12]. More research and testing in this area could lead
to ground-breaking finds that help environments, farms, and customers all at the same time.

3. METHODOLOGY

3.1 Dataset: The study's dataset is made up of many pictures showing different kinds of rice. Each picture has been
carefully labeled with the right classification. Getting pictures from freely available datasets makes sure that there are a
lot of different kinds of rice. The dataset goes through a lot of steps to make sure it is consistent and lets researchers do
a full study. There are three key parts: the test set, the validation set, and the training set [14]. This segmentation method
lets one fully check how well the model works throughout its whole span. By carefully splitting the dataset into separate
subsets, researchers can train the model on a number of examples, test it on different data to finetune the parameters,
and then test it on situations it has never seen before to see how well it works in the real world.

3.2 Preprocessing: The photos need to be shrunk down so they can be fed into the ResNet-50 design, which needs
inputs that are 224 by 224 pixels. The study help train convergence by making the raw data more regular [5]. More ways
to improve the training collection are to rotate, scale, and flip it. By changing up the training set, these methods help the
model learn traits that are useful in new cases. Adding more samples to the dataset may help researchers lower the risk
of overfitting and make the model better able to handle changes in the input data.

3.3 Model building: ResNet-50 is just a network that helps slopes run easily by using old links. This new way gets rid
of the problem of fading gradients and speeds up the training of deeper networks. The system is made up of a number
of feature-pulling convolutional layers. Layers that are fully linked together group the data. There are layers that add
nonlinearity and layers that normalize batches of data so that the training stays the same [16]. One more thing to think
about when building the last layer is how many different kinds of rice are in the dataset. The well-thought-out design of
the model lets it quickly pick out unique features in raw picture data and make accurate classifications.

3.4 Training: The training method is a well-thought-out set of steps that are meant to make the model work better and
be more useful generally. With the Adam algorithm, a learning rate of 0.001 is used to make sure that the parameters
are updated correctly and that the best answer is found. It is used with the category cross-entropy loss function. It shows
how the real distributions of classes are different from what was thought. The model can't get very good at its job because
of early end methods based on validation loss over 50 training rounds [6]. GPU-accelerated training speeds up the
process of making models and iterating on them. Scientists might have to change the way they train the model to give
it strong pictures of different kinds of rice and make sure it works well with new data.

3.5 Hyperparameter Tuning: Tuning hyperparameters is an important part of model building because it changes how
well the model works and whether it is right for different situations. Two hard techniques—grid search and cross-
validation—must be used to find the best learning rate, batch size, and failure rate. In order to find the best set of
hyperparameter combinations, grid search carefully looks at a lot of different possible combinations. Cross-validation,
and especially k-fold cross-validation, checks how well the model works on a number of training sets to make sure that
the estimates of how well the hyperparameters will work are correct [3]. Strategies like early stopping and dropout
regularization make it less likely that the model will become too good at what it does and make it better at adapting to
new data. By carefully changing the hyperparameters, researchers can make the model work better, speed up
convergence, and make it more resistant to changes to the dataset.
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4. EXPERIMENT
4.1 Experimental Setup:

Well-planned studies are the base of a thorough review because they make it possible to try and confirm the model
correctly. Full tests are done on a state-of-the-art computer system that speeds up training by using a GPU's processing
power. Researchers might be able to finish testing faster because GPU acceleration shortens training times and speeds
up model convergence [9]. The collection is used to make test, validation, and training sets that give evaluation a strong
foundation. Three percent of the data is used to test the model, fifteen percent is used to make sure it works, and thirty
percent is used to train the model. This distribution gives us many samples to test the model's performance and make
changes to its settings. It also makes sure that the model has been trained on a lot of data. The validation set is important
to avoid overfitting and find the best hyperparameters. On the other hand, the test set really shows how well the model
can adapt to new information.

Performance can be judged in a number of ways, such as by the F1 score, memory, accuracy, and precision. The number
of cases that are correctly put into the right category shows how well the model generally makes predictions. One way
to see how well the model avoids false positives is to look at the ratio of right predictions to the total number of positive
predictions [7]. Remember, also written as "sensitivity," is the number of real-life examples of good cases that the model
gets right. This shows that the model can find all of a class's important instances. The F1-score, which is a harmonic
sum of accuracy and memory, makes it easier to judge how well the model works. This could come in handy when the
lessons aren't spread out properly. There are a lot of success factors that researchers can use to fully understand the
paradigm's pros and cons. Researchers could possibly improve the model's usefulness by using a multifaceted review
method and looking at it from different points of view.

State-of-the-art Dataset split: 70%
Well-planned computer system training, 15%
studies with GPU validation, 15%
acceleration testing
Pe['formance Evaluation of model Comprehenm?e
Metrics: F1 score, o . model evaluation
adaptability with ] .
recall, accuracy, using multifaceted
o test set "
precision review method

Fig 1: Experimental Setup
(Source: Self Developed)
4.2 Hyperparameter Tuning:

Setting the hyperparameters is an important part of modelling because it has a direct effect on how well the model works
and how well it can generalise. Many hyperparameters need to be fine-tuned for the model to work at its best [10]. This
is made up of three parts: batch size, failure rate, and learning rate. Grid search and cross-validation are useful when
studying hyperparameter space. Grid search is a method for finding the best hyperparameter values by testing a model
on a set of grids in a planned way. Cross-validation makes hyperparameter setting a lot more reliable, especially when
k-fold cross-validation is used. This method checks how well the model works across a large number of training samples.
To avoid overfitting and get correct estimates of how useful hyperparameters are, iterative methods are used.
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Picking the correct hyperparameters is very important for the model to work correctly. How quickly the training process
converges depends a lot on how fast the person is learning. It also sets the right tone for each level of growth. The batch
size affects how well training works, how much data is changed, and how much memory is used. The loss rate, which
shows how much regularisation is needed, tells us how much regularisation is needed because network units are
randomly taken away after training [13]. The model isn't as good at what it does because of this. The hyperparameters
of the model may be fine-tuned by researchers to make it more resistant to changes in the dataset, speed up convergence,
and improve performance. The highest level of quality: This ongoing process of trying and improving the model
guarantees that it will work perfectly. For correct and solid labelling of rice varieties in farming situations, it is the
foundation.

5. RESULTS

Based on how well it did on the test set, it looks like the ResNet-50 model can tell the difference between different types
of rice. This is much clearer when one look at it next to easier models like Support Vector Machines (SVM) and a basic
Convolutional Neural Network (CNN). By comparing ResNet-50 to other models, one can see how well it does at telling
the difference between different types of rice. ResNet-50 always does better than SVM and the basic CNN in
classification tests [4]. ResNet-50 works better because it has a complicated structure and recycles links that aren't being
used. It can better see complex patterns and features in pictures of rice because of these traits. ResNet-50 does a better
job of categorising pictures than SVM because it can learn new features on its own. These are some of the traits that
SVM uses.

It's clear that the ResNet-50 structure is different from a simple CNN because it's intended to deal with issues like the
disappearing gradient problem [2]. When compared to standard CNN designs, ResNet-50's skip connections improve
and stabilize gradient training. To sum up, the findings show that using ResNet-50 to classify rice types makes things a
lot better. ResNet-50's advanced structure and cutting-edge features make it possible to accurately identify types of rice.
This makes processes better when it comes to food security and precision farming.
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Fig 3: Results

(Source: Chenna 2023)

5.1 Evaluation Metrics:

The rating scales give us a full picture of how well the model can sort rice into groups. 958 out of 1000 times, the
computer can correctly guess that the picture is of rice. A success rate of 96.1% is a very high level of accuracy. One
can find the accuracy by dividing the total number of predicted positive events by the total number of positive events
that have been found [17]. It's clear that the machine makes fewer mistakes. With a sensitivity of 95.6%, or recall, the
model also finds most of the real good cases. When one adds up the precision and recall, one get the 95.8% F1-score,
which is another sign that the model works. The model is good at sorting different kinds of rice into groups, as shown
by all of these studies.
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5.2 Confusion Matrix:

The confusion matrix displays the total number of types of rice that were put into the right and wrong categories. The
picture shows how accurate the machine's guesses were all over. Each row in the grid shows the real class, and each
column shows the class that should be used. An individual might be able to tell the difference between correct and
incorrect estimates if they look at the uncertainty matrix. Now that this is known, one can better understand how the
model works. The kinds of rice that the model gets wrong or can't tell the difference between. With this data, scientists
want to make their programs better and find out more about how to tag mistakes [11]. Researchers can use the confusion
matrix to find biassed or missing data as well as to test how well the model works for different groups. Lastly, the
confusion matrix can be used to check out the category model's pros and cons. There is useful information in it about
how to make the plan work better in the real world.

6. DISCUSSION

The ResNet-50 model is said to be able to correctly classify rice varieties because of its deep design and unique residual
links. ResNet-50 is designed in a way that makes it possible to train deep neural networks without the normal problem
of slopes disappearing. The last few links, which are also known as "skip connections,” make the slopes run more
smoothly while one train. As a result, feature extraction from pictures of rice works better. The reason ResNet-50 can
tell the difference between slightly different types of rice is because it can find and analyse the unique patterns and traits
of each species. Techniques for adding more data and a careful plan for getting ready can make the model work much
better. Data enrichment is the process of adding more examples to a dataset for training reasons by rearranging, moving,
or adding to it. The model can now adapt to and learn from rice shoots it has never seen before because this change was
made to the training set. Before training, the input data should be made better, and the training process should be sped
up. Noise reduction, changes to pixel values, and photos that are all the same size may all be signs of this. To make the
model more flexible when there are changes in light, noise, and picture quality, we could start by grouping different
kinds of rice into one category. The complex design, remaining links, and skilled use of data cleaning and addition
methods all play a big role in the ResNet-50 model's great performance. When all of these parts work together, the
software can correctly find features that make rice photos unique. Now it is possible to plant many kinds of rice exactly
by putting them in groups.

6.1 Limitations:

When training the model, it is very important to think about how much computing power it will need. Because its
structure is so complicated, the ResNet-50 has a harder time making guessess. This saying is true, especially when
dealing with very large amounts. It is necessary to have a fast home computer with enough RAM. Researchers and
businesses that don't have access to computers might not see this flaw as important to the idea. Making changes to the
lights, background noise, or brightness may make the model even less accurate. Because the lighting and background
noise in rice fields are always changing, pictures taken on real farms might not make it easy to tell the difference between
different types of rice. Using good methods for adding to and cleaning up data is necessary to fix these problems and
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make the model more resistant to outside influences. To solve these problems, the first and most important step is to
figure out the best way to teach people and improve the performance of models when resources are limited. Another
way to make it easier for the model to adapt to different lighting conditions and picture quality is to teach it how to
reduce noise and improve the look of photos.

6.2 Future Work:

The classification of rice types could be improved with more study, which could lead to new ways of solving problems
and better ways of doing things. It might be interesting to look into the possible uses of transfer learning from models
learned on large and varied datasets. Transfer learning could help describe and generalise by making training models
faster on target datasets that they have already learned. Perhaps adding more features, like colour histograms and
sharpness, could make the process of categorising more accurate. It is possible to get to a lot more info with these tools.
The structure of the model lets it tell the difference between different types of rice by finding small visual clues that
would have been missed in the original picture data. A person should look into more advanced deep learning methods
like EfficientNet and DenseNet to help our model tell the difference between different kinds of rice better. These
methods make it easier to get details of features and find the best settings for them, which could lead to faster and more
accurate classification. In the future, researchers should focus on improving current methods and coming up with new,
more reliable ways to tell the difference between different types of rice. Implementing precision farming methods will
help to enhancing global food security.

7. CONCLUSION

The ResNet-50 deep learning system is the best tool for telling the difference between the different kinds of rice,
according to the results. The study says that ResNet-50 has been tested and evaluated in a way that suggests it could be
used in precise farming. In terms of effectiveness, it is better than the current standard. The results show that deep
learning can help classify crops better and provide an accurate automatic answer to problems in agriculture. Using
ResNet-50's built-in features, this work showed that it is possible to correctly group a lot of different types of rice, even
ones that haven't been seen before. The fact that standard systems depend so much on human work and observation
makes them biassed and dull. Deep learning models like ResNet-50 can easily pull out complex patterns and features
from raw visual data no matter what the situation is. So, different types of rice can be put into the same sensible and
suitable category. It is possible that this technology will make crop marking more accurate and reliable. So, the sorting
process might go faster, which would help farmers make better decisions.

There are more perks to using ResNet-50 in precision agriculture than just making classification more accurate.
Automating the process of categorising might make it easier to handle crops, make better use of resources, and grow
more crops. Differentiating between types of rice can help farmers get the most out of their land. It also makes it possible
to come up with new ways to deal with problems like getting rid of trash and bugs. ResNet-50 is a type of deep learning
model that makes real-time monitoring and decision-making possible in farmland. These devices always show pictures
of rice fields from above and from the ground. By using this method, anyone can get up-to-date information on the
health of crops, their rate of growth, and the weather conditions at the moment. It's possible that this approach will help
farmers find problems or stresses in their crops early on, before they get worse and cause big problems. Because of this,
they can quickly fix the problem and keep working without any problems.

In order to successfully deal with problems that are always changing, the agriculture business can benefit from using
deep learning models. These gadgets are flexible and can be easily changed to work in different situations. Through the
use of transfer learning techniques, ResNet-50 can adapt to and do well in a variety of agricultural settings. The
programme can do this job no matter how big or complicated the files are. Because it is flexible, the model can be used
in a wide range of farming situations, from small family farms to big corporate companies. ResNet-50 can help with
precision gardening and rice sorting, according to the study report. Deep learning can help farming methods keep getting
better in the near future so that everyone has access to enough food and food is managed properly. ResNet-50 and other
models show how far deep learning has come in a very short time. In the future, this could have big effects on how
farmers do their work. The speed and efficiency of the world food supply line are likely to go up because of this.
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