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ABSTRACT 

Smallholder farmers, who constitute the backbone of global food security, face persistent challenges in accessing 

timely, localized, and actionable agricultural information. This study investigates the development and deployment of 

Farmer.Chat, a scalable, AI-powered, voice-enabled agricultural chatbot designed to bridge this critical knowledge 

gap. The system leverages Generative AI, Natural Language Processing (NLP), and Multi-Layer Perceptron (MLP) 

neural networks, along with Retrieval-Augmented Generation (RAG), to process structured and unstructured 

agricultural datasets including soil profiles, climate records, and crop-specific databases. Farmer.Chat delivers real-

time, personalized, multilingual, and context-aware recommendations on crop management, pest control, weather 

prediction, and market insights. A field deployment across Kenya, India, Ethiopia, and Nigeria engaged over 15,000 

farmers, spanning more than 40 value chains, and addressed 300,000+ user queries in six languages through a voice 

assistant interface that ensures accessibility for low-literacy users. Analysis of adoption patterns and outcomes reveals 

improved crop yields, greater uptake of sustainable practices, and measurable reductions in input waste and 

operational costs. These findings suggest that AI-powered conversational agents can transform agricultural extension 

services, enhance decision-making, and advance equitable access to information in resource-constrained rural settings. 

Keywords:  Smallholder Farmers, Global Food Security, Agricultural Extension Services, Generative AI, NLP, Crop 

Management. 

1. INTRODUCTION 

Global food security depends heavily on smallholder farmers. Nonetheless, they frequently encounter ongoing 

difficulties in obtaining timely, localized, and useful agricultural information. Their productivity, profitability, and 

capacity to implement sustainable methods are severely constrained by these issues, particularly in low- and middle-

income nations, where small-plot farming conditions differ greatly. Farmers are unable to appropriately assess risks 

and make well-informed decisions in the absence of trustworthy, plot-specific counsel, which eventually results in 

lower yields and uncertain revenues. To close this gap, agricultural extension services were created to spread best 

practices for farming and agronomic expertise. However, these services have historically relied on human extension 

agents who deal with resource limitations, high farmer-to-agent ratios, and logistical challenges. Providing consistent, 

tailored guidance is still very difficult in areas with high levels of crop, climate, and geographic variation, such as sub-

Saharan Africa. Equal access to agricultural assistance is further hindered by factors like gender inequality, low 

literacy rates, and a lack of digital infrastructure. Information and communication technologies (ICTs), such as mobile 

apps, video tutorials, and SMS notifications, have updated agricultural outreach in recent years. Despite their benefits, 

these methods often depend on human involvement and fixed materials, which limits their ability to scale and adapt to 

changing agricultural conditions. Conversational AI systems that can engage in real-time, data-driven conversations 

and consider the language, education, and culture of rural farmers are becoming more important. 

Problem Scope: Most chatbot systems today are either rule-based or depend heavily on detailed scripts and human 

oversight. Because of these limitations, they struggle to address the complexity and unpredictability of smallholder 

farming. Additionally, traditional systems often don't support multiple languages or can't manage unstructured data, 

such as photos uploaded by farmers, voice questions, and real-time weather information. These gaps make it harder for 

farmers with low digital skills, especially women and underserved groups, to adopt the technology. A promising 

alternative is voice-activated, AI-powered chatbots that use generative AI and natural language processing (NLP). 
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However, scaling up these solutions while keeping them relevant and trustworthy requires a mix of user-focused 

design, locally gathered knowledge, and robust machine learning models. 

2. LITERATURE REVIEW 

The use of conversational AI in agriculture has opened up opportunities to improve the effectiveness and reach of 

agricultural extension services. This is especially true for smallholder farmers in resource-limited areas. Recent studies 

have offered important insights into how natural language processing (NLP), multilingual support, voice-enabled 

chatbots, and AI-IoT integration are changing the digital agriculture landscape. 

2.1 Accessible Voice-Based Chatbots 

According to Patel et al. (2019), voice-activated agricultural chatbots are becoming more important in rural areas, 

especially where literacy is low and technical challenges are significant. Their research showed that by offering real-

time information on crop diseases, pest control, and weather forecasts, voice-based systems reduced the time farmers 

spent looking for agricultural solutions and improved overall production. In rural India, where cell phone use is 

increasing despite lower literacy rates, the authors concluded that these systems are very valuable[01][02]. 

2.2 Natural Language Processing (NLP) for Agricultural Queries 

Busemeyer et al. (2020) looked at how NLP technologies improve chatbot performance in agriculture. Their case 

study showed that NLP-enabled systems can manage complicated questions about crop management, soil health, and 

pest identification, especially when tailored to local dialects and agricultural terms. However, the study also pointed 

out the difficulties of training NLP models to understand everyday language and multiple languages, which are 

common in farming communities [03]. 

2.3 User-Centered Design and Interface Simplicity 

Ghosh et al. (2020) examined user-centric design for agricultural voice assistants. Their study emphasized the need for 

intuitive, easy, and conversational interfaces, particularly for areas with poor Internet connectivity and digital literacy. 

Farmers preferred to use hands-free operation through voice commands, as this enabled them to access information 

while engaging in farm work. This research recommends systems that support regional languages, accents, and 

dialects to increase adoption [04]. 

2.4 Chatbots in Developing Countries 

In a Southeast Asia study, Hassan and Kadir (2020) discovered voice-enabled chatbots to democratize agricultural 

information by providing readily available advice on crop rotation, water and pest management. They recorded 

decreased crop losses through timely chatbot responses, supporting the potential of such technology in substituting 

traditional, time-consuming, word-of-mouth support systems in underserved areas. 

2.5 AI and IoT Integration for Precision Agriculture 

Singh et al. (2021) explored the synergistic use of AI and IoT in chatbot systems to enable precision farming. This 

study integrated voice assistants with real-time sensors for soil moisture, temperature, and weather, offering farmers 

dynamic insights into irrigation, fertilization, and pest control. These tools significantly improve resource efficiency 

and crop yields, and their voice-enabled nature makes them usable even during fieldwork. 

2.6 Machine Learning for Pest and Disease Detection 

Srivastava et al. (2021) focused on ML-powered chatbots for pest and disease classification. Their system processed 

voice inputs from farmers describing symptoms and returned context-specific pest-management strategies. This study 

demonstrated the chatbot’s ability to detect common agricultural threats and offer timely solutions, highlighting the 

importance of localized data understanding and real-time feedback. 

2.7 Comparative Effectiveness of AI Chatbots 

Rani et al. (2021) conducted a comparative study on various AI-driven agricultural chatbots, evaluating their impact 

on decisions related to planting schedules, pest control, and fertilization. The results showed that such systems 

enhanced decision-making speed, particularly during pest outbreaks, by providing real-time localized 

recommendations tailored to specific crop and soil conditions. 

2.8 Multilingual Capabilities for Wider Adoption 

Verma et al. (2021) addressed the issue of linguistic diversity in farming populations. They developed a multilingual 

chatbot that is capable of understanding and responding in multiple languages. A significant increase in adoption was 

observed when farmers could interact in their native language. However, limitations in accent recognition and speech-

to-text conversion for less-documented dialects pose technical challenges. 
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2.9 Voice Assistants for Irrigation Management 

Roy and Bhattacharya (2021) evaluated the application of voice-driven irrigation management systems. These tools 

allow farmers to access real-time data from IoT-integrated soil moisture sensors, improving irrigation decisions and 

reducing water waste. The authors noted that such systems are particularly beneficial for managing large or 

fragmented plots, where manual monitoring is impractical. 

2.10 Sustainability and Eco-Friendly Practices 

Choudhary et al. (2021) explored how voice-enabled assistants contributed to sustainable farming in terms of their 

capabilities of providing real-time information on reducing chemical inputs and water usage and using alternatives for 

chemical approaches to organic practices. This ability provides farmers with information to be more environmentally 

sustainable while balancing productivity. 

2.11 Smart Farming with Historical Data and AI 

Mujtaba et al. (2022) contributed to the smart farming literature through the implementation of AI, historical data, and 

voice-enabled interfaces. Their research suggests that these systems can increase farm profitability through data-driven 

predictions and resource use efficiencies. The voice interaction element allowed farmers with little digital literacy to 

access these advanced tools. The literature, as a whole, suggests that voice-activated, AI-powered chatbots are 

becoming increasingly important in transforming agricultural extension services. Studies seem to revolve around 

topics such as adaptability to local languages and farming specifics, accessibility for low literacy users, and integration 

with IoT and machine learning for improved decision-making. Nonetheless, there are significant gaps in various areas, 

such as scalable implementation strategies, speech recognition for unusual dialects, and conversational natural 

language processing. 

2.10 Study Objectives: 

This study aims to bridge the digital and informational divide in agriculture through Farmer.Chat, a generative AI-

driven, multilingual, and multimodal chatbot designed to provide on-demand agricultural support. The core objectives 

of this study are as follows: 

1. To design and deploy an AI-based agricultural advisory platform that delivers scalable, voice-enabled, and 

context-aware assistance to smallholder farmers. 

2. To evaluate the effectiveness of Farmer.Chat in improving accessibility, trust, and user engagement—particularly 

among low-literacy and underserved farming communities. 

3. To assess the impact of the platform on real-world agricultural outcomes, such as yield improvement, input 

efficiency, and sustainable practice adoption, with a focus on its implementation in Kenya. 

3. METHODOLOGY 

To develop and assess a voice-enabled agricultural chatbot specifically for smallholder farmers, this study used a 

multi-layered technical approach that combined Artificial Intelligence (AI), Natural Language Processing (NLP), and 

image-based diagnostic capabilities. The technique includes system design, data collection, algorithm implementation, 

and assessment using both qualitative and quantitative metrics. 

3.1 System Architecture 

The proposed system, Farmer.Chat, consists of the following major components.User Interface (UI): Multilingual and 

voice-enabled interface accessible through mobile apps, messaging platforms (e.g., WhatsApp), and SMS for low-

bandwidth environments. 

3.2 Algorithmic Framework 

The methodology relies on a hybrid AI framework that combines supervised machine learning, deep learning, and 

generative AI techniques. The detailed algorithmic flow is as follows: 

Algorithm: Context-Aware Agricultural Advisory System 

Input: Voice query or text input from user,Optional: Image of crop/disease,Metadata: Location, language, crop 

typeOutput: Personalized, real-time agricultural recommendation, 

Step 1: Input Handling 1.1. Convert voice input to text using Speech-to-Text API (Google, Whisper) 

Step 2: Intent Classification and Entity Extraction 2.1. Use NLP model (BERT) to classify user intent (e.g., pest query, 

irrigation advice, disease diagnosis) 

Step 3: Optional Image Analysis 3.1. If image is provided, preprocess it (resize, normalize)Convolutional Neural 

Network (CNN) trained on crop disease dataset 
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Step 4: Knowledge Retrieval (RAG) 4.1. Use intent and entities to formulate query Generative Language Model (e.g., 

GPT-3.5 or LLaMA) for final answer generation 

Step 5: Response Generation 5.1. Generate answer in natural language, adjusted to literacy level 

Step 6: Feedback and Logging 6.1. Collect user satisfaction rating and feedback 

 

Fig 1: Steps of Agricultural Advisory System 

3.3 Model Training and Data Sources 

Training Data for NLP: Agricultural extension documents, chatbot transcripts, FAQs from agricultural departments 

(e.g., FAO, ICAR, and ICRISAT).Training Data for CNN: Public and proprietary datasets of crop diseases (e.g., 

PlantVillage, iSDA).Language Model Fine-Tuning: A fine-tuned LLM (e.g., GPT-NeoX) on agriculture-specific 

corpora to ensure contextual relevance and accuracy. Multilingual Corpus: Translated agricultural texts and crowd-

sourced queries in local languages (Swahili, Hindi, Luganda, etc.). 

3.4 Deployment Environment 

The chatbot is hosted in a cloud-native architecture (AWS/GCP) and uses serverless functions to scale with the query 

volume. The models were deployed via APIs with fallback redundancy for high availability. For edge regions with 

limited connectivity, the system uses lightweight versions (e.g., BERT-Tiny and MobileNet) and offline voice kits. 

4. RELATED WORK 

In this section, we review research on (1) Agricultural Extension Services and ICT Interventions, (2) Chatbots and 

Conversation Agents ,  and (3) Generative AI in Agriculture, thus contextualizing the key novelty of Farmer.Chat. 

4.1 Agricultural Extension Services and ICT Interventions 

Traditional agricultural extension services are essential for disseminating knowledge to farmers. However, in many 

low- and middle-income countries, they face significant challenges, such as limited reach due to an insufficient 

number of extension agents. In Kenya, for example, the agent-to-farmer ratio is estimated at 1:1000 according to 

government reports (NASEP, 2012 [13]), but it can be as high as 1:4,000, far below the recommended ratio of 1:400. 

Additionally, these services tend to be top-down, limiting farmer inputs and reducing engagement. While peer-

learning models, such as farmer field schools, aim to address these gaps, they often face resource limitations and 

inconsistent results due to varying farming contexts, such as soil, climate, and crop variety. 

4.2 Chatbots and Conversation Agents in Agriculture 

Chatbots and conversational agents are increasingly used in agriculture to provide accessible information through 

natural language interactions. Projects like Hello Tractor and Avaaj Otalo offer real-time advice on topics such as 

weather, pest control, and farming techniques via voice or text systems.Although rule-based chatbots are useful for 

structured, repetitive tasks, they struggle with complex, dynamic queries that require context awareness. Systems such 

as Avaaj Otalo handle voice queries but are limited in their ability to adapt to evolving agricultural needs. Similarly, 
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FarmChat faces challenges in offering personalized advice due to variables like soil type, climate, and crop variety, 

and most traditional chatbots lack real-time updates and access to diverse data sources, reducing their effectiveness in 

dynamic agricultural environments.In contrast, AI-driven chatbots use machine learning and natural language 

processing (NLP) to deliver flexible, personalized, and data-driven responses. Studies have shown that AI systems 

outperform rule-based chatbots in terms of user satisfaction, contextual understanding, and scalability. AI-driven 

chatbots also adapt to real-time data and provide dynamic and personalized advice. Recent studies have highlighted 

AI’s ability of AI to integrate diverse data sources to address complex agricultural needs. 

Farmer.Chat builds on these advancements by leveraging AI models to offer personalized and real-time 

recommendations based on dynamic and context-specific data. Unlike traditional chatbots, Farmer.Chat adapts to 

changing agricultural conditions and provides tailored advice to farmers. 

4.3 Generative AI in Agriculture 

Advancements in generative artificial intelligence (AI), particularly large language models (LLMs) such as GPT-3 and 

GPT-4, are transforming agricultural knowledge accessibility, especially in low-resource settings. Projects like Kisan. 

AI has deployed LLMs to offer real-time advice on crop management and pest control. However, these systems face 

challenges in adapting to diverse agricultural ecosystems because of limited knowledge bases and difficulties in 

ingesting non-digital agricultural information. Additionally, the lack of robust multilingual support and inability to 

handle multimodal inputs, such as images and audio, further restrict their usefulness in rural contexts. 

Most existing LLM-based agricultural chatbots focus on a narrow range of crops and regions, neglecting smallholder 

farmers’ complex needs. Their inability to integrate localized weather and soil data reduces their precision in 

providing actionable information. Farmer.Chat addresses these limitations by supporting multiple crops, integrating 

real-time weather and soil data, and delivering personalized recommendations. Its multilingual and multimodal 

capabilities (audio, image, and video) make it accessible to low-literacy users, which is crucial in rural settings. Using 

Retrieval-Augmented Generation (RAG) for structured and unstructured data, Farmer.Chat enhances trustworthiness 

and precision. 

Finally, designing AI-driven tools for low-literacy, resource-constrained populations requires intuitive and culturally 

sensitive interfaces. Prior studies have demonstrated the effectiveness of voice-based systems and image-based 

interfaces in increasing engagement. Furthermore, several studies highlight the importance of culturally relevant, trust-

building designs for sustainable use. Jackson et al. and Sambasivan et al. stressed the need for AI tools to align with 

local practices and function well in resource-limited environments. Dell et al. underscore offline functionality, while 

Amershi et al. advocate for clear feedback and user control. These insights shape the design of Farmer. Chat, ensuring 

personalized, accessible, and context-aware support for low-literacy farmers. 

5. RESULT 
5.1 Yield responses with the Virtual Agronomist App Version 

Yield responses to the Virtual Agronomist app version were encouraging, with mean yield increases of 1.4- to 1.9-fold 

compared to the farmer practice (Table 4). The profits and fertilizer rates used by the control farmers were not 

recorded in these earlier studies. The yields in the Virtual Agronomist plots are often constrained by management 

factors. In Tanzania, VA yields were linearly related to plant population: Yield (t/ha) = 0.70 (SE=0.03) * plant 

population (plants m-2), where plant population ranged from 1.6 to 4.6 plants m-2. With rice in Tanzania, there was 

variation in the degree to which farmers followed the recommended nutrient plan, with some farmers not applying any 

basal fertilizer at all, and yields were related to the amount of basal fertilizer applied: Yield (t/ha) = 5.6 (SE=0.4) + 

0.012 (SE=2E-3) * basal fertilizer rate (kg/ha), where the basal fertilizer rate ranged from 0 to 341 kg/ha. In Uganda, 

VA yields were also linearly related to plant population: Yield (t/ha) = 0.32 (SE =0.03) * plant population (plants m-

2), where plant population ranged from 1.3 to 8.7 plants m-2. These relationships suggest that when these management 

factors are optimal, VA yields are several-fold higher than FP yields. 

Table 5.1.1: Grain yield response using Virtual Agronomist app compared with farmer practice 

 
Sunflower Tanzania Lowland rice Tanzania Maize Côte d’Ivoire 

Sorghum 

Uganda 

Mean yield (t/ha) FP 0.6 5.2 1.2 1 

Mean yield (t/ha) VA 1 7.9 1.7 1.9 

Number of farms 41 55 116 30 

Pooled SE (t/ha) 0.034 0.207 0.12 0.174 
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P<F treatment effect <0.001 <0.001 0.008 <0.001 

VA/FP yield 1.7 1.5 1.4 1.9 

FP = Farmer practice; VA = Virtual Agronomist. The mean yields were block-adjusted. 

5.2 Uptake of Virtual Agronomist Copilot 

The iSDA introduced the Virtual Agronomist copilot to multiple countries (Table 5) using different approaches. The 

lead farmer model in Uganda and Kenya was primarily implemented by iSDA field staff. In Zambia, field agents were 

recruited through a partnership between a policy think tank and the Ministry of Agriculture’s extension services. In 

Nigeria, deployment is managed by an aggregator who signed a public-private partnership with the Niger State 

Government. Some clients who have registered farmers through their own system have requested the issuance of 

nutrient management plans only without using the chatbot, which the iSDA has accommodated using the geographical 

coordinates of the fields. By February 17, 2025, over 100,000 plots were registered, and over four million individual 

messages were received from farmers. 

Table 5.2.1: Virtual Agronomist copilot activities by country and crop (17.02 2025) 

Country Crop Number of lead farmers Number of famers Number of nutrient plans 

Kenya Maize 3,559 65,308 74,147 

Kenya Rice Na 416 453 

Kenya Coffee Na 4,213 5,003 

Malawi Maize 195 642 769 

Uganda Maize 807 13,845 20,731 

Uganda Rice Na 559 758 

Uganda Coffee Na 785 1,192 

Zambia Maize 144 1,543 1,553 

Total 
 

5,035 87,311 1,04,606 

na = not available 

Based on the current data (Table 5.2.1), a lead farmer managed an average of 17 plots. On average, each farmer had 

1.2 plots registered with a Virtual Agronomist. Ultimately, the intended method of spreading Virtual Agronomist is 

via lead farmer to lead farmer “referrals. This allows farmers to share the Virtual Agronomist phone number and train 

one another so that the spread is not hampered by central training capacity. This approach is gaining traction; in the 

2025 season in Bulambuli, Uganda, 272 lead farmers have been registered via referrals versus 162 without referrals. 

Lead farmers trained by the iSDA registered 13,159 plots; therefore, 43% of the plots were registered by farmers not 

trained by the iSDA. 

Rapid spontaneous uptake occurred in Kericho County (Figure 7). According to the 2019 Kenya Population and 

Housing Census, the total number of farmers with registered plots was 52,578, compared with 150,625 farming 

households, of which 67,739 were subsistence farmers (54). The estimated penetration of the county’s maize farmer 

population was approximately 78%. A local agent in Kericho, the Virtual Agronomist, was deployed in partnership 

with seven coffee cooperatives in Kenya through a local agent in Kericho. This collaboration provided over 5,000 

coffee farmers in Kericho with tailored agronomic advice, with each farmer paying for the service provided.     The 

dynamics of tool usage are illustrated for the September 2024 – January 2025 season in Bulambuli, Uganda (Figure 8). 

The farmers predominantly grew maize and sunflowers. Tool usage generally follows the cropping calendar; plot 

registration, nutrient plan generation, and planting date recording are performed early in the season. Emergence checks 

and pest and disease scouting are conducted while the crop is growing, and harvest monitoring is completed after the 

harvest. 
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The uptake of Virtual Agronomist tools in Bulambuli was strong. Of the 7,571 registered plots, 98% generated a 

nutrient management plan, 65% recorded planting dates, 69% conducted emergence scouting, and 81% reported 

harvesting data. The dashboard results also indicated that farmers frequently used plant health scouting tools, 

primarily for monitoring pests and diseases. These uptake rates reflect strong farmer engagement and seamless 

integration of digital agronomic support systems. The results demonstrated active participation in key stages of the 

crop cycle, enabling farmers to enhance their agronomic practice. Overall, these trends suggest that farmers are 

beginning to recognize the value of Virtual Agronomist tools and actively incorporate them into their daily activities. 

5.3 Delivery Costs 

The marginal cost of delivery is currently approximately $1.50 per plot per season and can be separated into 

technology and incentive costs. Focusing first on the technology costs, our marginal cost of delivery is approximately 

$0.04 per plot per season. Most of this cost is due to the use of the OpenAI API. During 2024, we were able to 

significantly reduce AI costs, predominantly because of selecting a price/performance optimal model version of 

ChatGPT (gpt3.5-turbo) and reengineering prompts to use roughly 10 times fewer tokens during each API call. 

WhatsApp messages are generally charged per 24-hour conversation, meaning that a lead farmer can serve many 

farmers within the same time frame. Central technology costs (database hosting and serverless functions) cost $12 per 

day at the current scale. The total technology cost is estimated at less than $0.20 per plot per season. 

Incentive costs were set at approximately $1 per plot per season, as outlined in Section 4, with incentives spread 

throughout the season to encourage engagement beyond the nutrient plan and planting. With the additional 20% 

referral incentive and allowing for transaction costs incurred via mobile money payments, the total incentive cost is 

below $1.30 per plot, per season.  As this marginal cost of delivery is dominated by incentive costs, a clear path to 

significant cost reduction is in the combination of (1) encouraging an increasing number of farmers to use the system 

directly as connectivity allows, reducing the need for incentives, and (2) bundling the system with other initiatives 

where lead farmers are already incentivized to help neighboring farmers. Farmers who grow high-value crops pay for 

the service directly at a rate of $3-$4 per plot per season depending on the crop and location, and the subsequent profit 

can pay for the service of one or two farmers growing lower-value crops. In practice, we observed a ratio of 1:5 paying 

vs. free-at-point-of-use farmers, so we believe that any cross-subsidy would be limited due to insufficient farmer 

numbers in higher value chains. 

5.4 Farm level Impacts of Copilot 

The impact of farm level on yield, profit, and farmers’ quality of agronomic management was assessed through (1) 

retrospective cohort studies and (2) mining chatbot data. In retrospective studies, a random sample of approximately 

100 farmers practicing Virtual Agronomist per location and crop was compared with a similar sample of nearest-

neighbor farmers who did not use Virtual Agronomist (control of farmer practice). A questionnaire was administered 

to both groups of farmers to collect data on yield, expenditure, management practices, and yield-limiting factors. The 

plot areas were recorded using a GPS. Chatbot data provide a large sample of thousands of plots, providing 

information on farmers’ existing soil and crop management practices, and yield-limiting factors.     Preliminary results 

of retrospective studies on rice in Kenya (55) and maize in Uganda (56) will be reported in a subsequent publication, 

but generally validate the positive outcomes obtained with the app version of the Virtual Agronomists. These early 

indications are discussed in the next section in terms of the factors that drive profits. 

Examples of information that can be mined from chatbot data are presented in Table 6. In this cohort, the average ratio 

of farmers to lead farmers was 66. The high number of emergence checks and harvest monitors is encouraging. The 

median plot sizes are small, and maize has low input characterized by a high frequency of intercropping, continuous 

maize cropping, and relatively low yields and profit. The frequency of poor emergence indicates a significant problem 

in crop establishment. Less than 20% of farmers planned to apply manure, and the median application rates were low 

(approximately 1 t/ha) among those who did. 

Table 5.4.1: Summary of data mined from chatbot data for maize in Bulambuli District in Uganda 

Variable 
Value 

 

Number of farmers 3,501 

Number of lead farmers 53 

Number of nutrient plans 6,062 

Number of emergence checks 4,805 
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Number of harvest monitors 5,187 

Median plot size (ha) 0.2 

Median farmer’s existing yield (t/ha) 2.5 

Planned manure frequency (%) 19 

Median manure rate of those applying (t/ha) 1.2 

Median expected profit ($/ha) 400 

Intercropping frequency (%) 80 

Continuous maize frequency (%) 87 

High manuring rate frequency (%) 21 

Emergence <75% frequency (%) 27 

Female farmer frequency (%) 33 

6. CONCLUSION 

This study demonstrates that Farmer. Chat holds significant potential to democratize agricultural knowledge, 

especially for smallholder farmers operating in resource-constrained environments. By focusing on accessibility for 

low-literacy and rural users, the platform exemplifies how AI systems can be designed to serve marginalized groups. 

Key findings revealed notable improvements in user engagement, query clarity, and response accuracy, while also 

identifying important challenges such as gender bias and the need for inclusive design practices. The integration of 

voice-based interactions and follow-up prompts enhanced the intuitiveness of Human-AI collaboration, enabling 

farmers to interact with the system more naturally. The real-world adoption of Farmer. Chat validates its capability to 

improve farming practices, including disease management and crop cycle planning, thus addressing the critical 

challenges faced by smallholder farmers. 

This research also has larger implications for AI and human-computer interaction (HCI) as it provides knowledge and 

understanding when it comes to developing equitable AI tools, with applicability across sectors. As we develop as a 

field in AI, concurrent and relevant challenges remain related to lack of inclusive language, cultural relevance and bias 

across various AI-driven products and practices; all of which should strive to achieve equitable outcomes for all users. 

Also, user feedback will allow for continued iteration with the usability of the platform to become better through 

continuous engagement with the platform, ultimately leading to a wider consumer base for adoption, with impacts. As 

Farmer.Chat continues to leverage neural networks, with recent rapid advances in natural language processing, real-

time, contextual support and assistance in how agricultural knowledge is provided and actioned has never been more 

prevalent. This approach to essentially expand or condense agriculture operations that are applicable to sustainable 

agriculture contribute to an improvement in farming operations albeit in real-time by bringing relevant information for 

further action or implementation.. 

Future Research Directions 

Integration with Wearable Devices: Future work could explore the integration of the chatbot with wearable devices to 

enhance real-time agriculture chatbot and provide personalized insights. Enhanced Natural Language Understanding: 

Improving the chatbot's natural language processing capabilities for nuanced conversations and context-aware 

responses would be a valuable avenue for future development. 
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