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ABSTRACT

Smallholder farmers, who constitute the backbone of global food security, face persistent challenges in accessing
timely, localized, and actionable agricultural information. This study investigates the development and deployment of
Farmer.Chat, a scalable, Al-powered, voice-enabled agricultural chatbot designed to bridge this critical knowledge
gap. The system leverages Generative Al, Natural Language Processing (NLP), and Multi-Layer Perceptron (MLP)
neural networks, along with Retrieval-Augmented Generation (RAG), to process structured and unstructured
agricultural datasets including soil profiles, climate records, and crop-specific databases. Farmer.Chat delivers real-
time, personalized, multilingual, and context-aware recommendations on crop management, pest control, weather
prediction, and market insights. A field deployment across Kenya, India, Ethiopia, and Nigeria engaged over 15,000
farmers, spanning more than 40 value chains, and addressed 300,000+ user queries in six languages through a voice
assistant interface that ensures accessibility for low-literacy users. Analysis of adoption patterns and outcomes reveals
improved crop vyields, greater uptake of sustainable practices, and measurable reductions in input waste and
operational costs. These findings suggest that Al-powered conversational agents can transform agricultural extension
services, enhance decision-making, and advance equitable access to information in resource-constrained rural settings.

Keywords: Smallholder Farmers, Global Food Security, Agricultural Extension Services, Generative Al, NLP, Crop
Management.

1. INTRODUCTION

Global food security depends heavily on smallholder farmers. Nonetheless, they frequently encounter ongoing
difficulties in obtaining timely, localized, and useful agricultural information. Their productivity, profitability, and
capacity to implement sustainable methods are severely constrained by these issues, particularly in low- and middle-
income nations, where small-plot farming conditions differ greatly. Farmers are unable to appropriately assess risks
and make well-informed decisions in the absence of trustworthy, plot-specific counsel, which eventually results in
lower yields and uncertain revenues. To close this gap, agricultural extension services were created to spread best
practices for farming and agronomic expertise. However, these services have historically relied on human extension
agents who deal with resource limitations, high farmer-to-agent ratios, and logistical challenges. Providing consistent,
tailored guidance is still very difficult in areas with high levels of crop, climate, and geographic variation, such as sub-
Saharan Africa. Equal access to agricultural assistance is further hindered by factors like gender inequality, low
literacy rates, and a lack of digital infrastructure. Information and communication technologies (ICTs), such as mobile
apps, video tutorials, and SMS notifications, have updated agricultural outreach in recent years. Despite their benefits,
these methods often depend on human involvement and fixed materials, which limits their ability to scale and adapt to
changing agricultural conditions. Conversational Al systems that can engage in real-time, data-driven conversations
and consider the language, education, and culture of rural farmers are becoming more important.

Problem Scope: Most chatbot systems today are either rule-based or depend heavily on detailed scripts and human
oversight. Because of these limitations, they struggle to address the complexity and unpredictability of smallholder
farming. Additionally, traditional systems often don't support multiple languages or can't manage unstructured data,
such as photos uploaded by farmers, voice questions, and real-time weather information. These gaps make it harder for
farmers with low digital skills, especially women and underserved groups, to adopt the technology. A promising
alternative is voice-activated, Al-powered chatbots that use generative Al and natural language processing (NLP).
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However, scaling up these solutions while keeping them relevant and trustworthy requires a mix of user-focused
design, locally gathered knowledge, and robust machine learning models.

2. LITERATURE REVIEW

The use of conversational Al in agriculture has opened up opportunities to improve the effectiveness and reach of
agricultural extension services. This is especially true for smallholder farmers in resource-limited areas. Recent studies
have offered important insights into how natural language processing (NLP), multilingual support, voice-enabled
chatbots, and Al-10T integration are changing the digital agriculture landscape.

2.1 Accessible Voice-Based Chatbots

According to Patel et al. (2019), voice-activated agricultural chatbots are becoming more important in rural areas,
especially where literacy is low and technical challenges are significant. Their research showed that by offering real-
time information on crop diseases, pest control, and weather forecasts, voice-based systems reduced the time farmers
spent looking for agricultural solutions and improved overall production. In rural India, where cell phone use is
increasing despite lower literacy rates, the authors concluded that these systems are very valuable[01][02].

2.2 Natural Language Processing (NLP) for Agricultural Queries

Busemeyer et al. (2020) looked at how NLP technologies improve chatbot performance in agriculture. Their case
study showed that NLP-enabled systems can manage complicated questions about crop management, soil health, and
pest identification, especially when tailored to local dialects and agricultural terms. However, the study also pointed
out the difficulties of training NLP models to understand everyday language and multiple languages, which are
common in farming communities [03].

2.3 User-Centered Design and Interface Simplicity

Ghosh et al. (2020) examined user-centric design for agricultural voice assistants. Their study emphasized the need for
intuitive, easy, and conversational interfaces, particularly for areas with poor Internet connectivity and digital literacy.
Farmers preferred to use hands-free operation through voice commands, as this enabled them to access information
while engaging in farm work. This research recommends systems that support regional languages, accents, and
dialects to increase adoption [04].

2.4 Chatbots in Developing Countries

In a Southeast Asia study, Hassan and Kadir (2020) discovered voice-enabled chatbots to democratize agricultural
information by providing readily available advice on crop rotation, water and pest management. They recorded
decreased crop losses through timely chatbot responses, supporting the potential of such technology in substituting
traditional, time-consuming, word-of-mouth support systems in underserved areas.

2.5 Al and 10T Integration for Precision Agriculture

Singh et al. (2021) explored the synergistic use of Al and 10T in chatbot systems to enable precision farming. This
study integrated voice assistants with real-time sensors for soil moisture, temperature, and weather, offering farmers
dynamic insights into irrigation, fertilization, and pest control. These tools significantly improve resource efficiency
and crop yields, and their voice-enabled nature makes them usable even during fieldwork.

2.6 Machine Learning for Pest and Disease Detection

Srivastava et al. (2021) focused on ML-powered chatbots for pest and disease classification. Their system processed
voice inputs from farmers describing symptoms and returned context-specific pest-management strategies. This study
demonstrated the chatbot’s ability to detect common agricultural threats and offer timely solutions, highlighting the
importance of localized data understanding and real-time feedback.

2.7 Comparative Effectiveness of Al Chatbots

Rani et al. (2021) conducted a comparative study on various Al-driven agricultural chatbots, evaluating their impact
on decisions related to planting schedules, pest control, and fertilization. The results showed that such systems
enhanced decision-making speed, particularly during pest outbreaks, by providing real-time localized
recommendations tailored to specific crop and soil conditions.

2.8 Multilingual Capabilities for Wider Adoption

Verma et al. (2021) addressed the issue of linguistic diversity in farming populations. They developed a multilingual
chatbot that is capable of understanding and responding in multiple languages. A significant increase in adoption was
observed when farmers could interact in their native language. However, limitations in accent recognition and speech-
to-text conversion for less-documented dialects pose technical challenges.
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2.9 Voice Assistants for Irrigation Management

Roy and Bhattacharya (2021) evaluated the application of voice-driven irrigation management systems. These tools
allow farmers to access real-time data from loT-integrated soil moisture sensors, improving irrigation decisions and
reducing water waste. The authors noted that such systems are particularly beneficial for managing large or
fragmented plots, where manual monitoring is impractical.

2.10 Sustainability and Eco-Friendly Practices

Choudhary et al. (2021) explored how voice-enabled assistants contributed to sustainable farming in terms of their
capabilities of providing real-time information on reducing chemical inputs and water usage and using alternatives for
chemical approaches to organic practices. This ability provides farmers with information to be more environmentally
sustainable while balancing productivity.

2.11 Smart Farming with Historical Data and Al

Mujtaba et al. (2022) contributed to the smart farming literature through the implementation of Al, historical data, and
voice-enabled interfaces. Their research suggests that these systems can increase farm profitability through data-driven
predictions and resource use efficiencies. The voice interaction element allowed farmers with little digital literacy to
access these advanced tools. The literature, as a whole, suggests that voice-activated, Al-powered chatbots are
becoming increasingly important in transforming agricultural extension services. Studies seem to revolve around
topics such as adaptability to local languages and farming specifics, accessibility for low literacy users, and integration
with 10T and machine learning for improved decision-making. Nonetheless, there are significant gaps in various areas,
such as scalable implementation strategies, speech recognition for unusual dialects, and conversational natural
language processing.

2.10 Study Objectives:

This study aims to bridge the digital and informational divide in agriculture through Farmer.Chat, a generative Al-
driven, multilingual, and multimodal chatbot designed to provide on-demand agricultural support. The core objectives
of this study are as follows:

1. To design and deploy an Al-based agricultural advisory platform that delivers scalable, voice-enabled, and
context-aware assistance to smallholder farmers.

2. To evaluate the effectiveness of Farmer.Chat in improving accessibility, trust, and user engagement—particularly
among low-literacy and underserved farming communities.

3. To assess the impact of the platform on real-world agricultural outcomes, such as yield improvement, input
efficiency, and sustainable practice adoption, with a focus on its implementation in Kenya.
3. METHODOLOGY

To develop and assess a voice-enabled agricultural chatbot specifically for smallholder farmers, this study used a
multi-layered technical approach that combined Atrtificial Intelligence (Al), Natural Language Processing (NLP), and
image-based diagnostic capabilities. The technique includes system design, data collection, algorithm implementation,
and assessment using both qualitative and quantitative metrics.

3.1 System Architecture

The proposed system, Farmer.Chat, consists of the following major components.User Interface (Ul): Multilingual and
voice-enabled interface accessible through mobile apps, messaging platforms (e.g., WhatsApp), and SMS for low-
bandwidth environments.

3.2 Algorithmic Framework

The methodology relies on a hybrid Al framework that combines supervised machine learning, deep learning, and
generative Al techniques. The detailed algorithmic flow is as follows:

Algorithm: Context-Aware Agricultural Advisory System

Input: Voice query or text input from user,Optional: Image of crop/disease,Metadata: Location, language, crop
typeOutput: Personalized, real-time agricultural recommendation,

Step 1: Input Handling 1.1. Convert voice input to text using Speech-to-Text API (Google, Whisper)

Step 2: Intent Classification and Entity Extraction 2.1. Use NLP model (BERT) to classify user intent (e.g., pest query,
irrigation advice, disease diagnosis)

Step 3: Optional Image Analysis 3.1. If image is provided, preprocess it (resize, normalize)Convolutional Neural
Network (CNN) trained on crop disease dataset
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Step 4: Knowledge Retrieval (RAG) 4.1. Use intent and entities to formulate query Generative Language Model (e.g.,
GPT-3.5 or LLaMA) for final answer generation

Step 5: Response Generation 5.1. Generate answer in natural language, adjusted to literacy level
Step 6: Feedback and Logging 6.1. Collect user satisfaction rating and feedback

Building an Al-Powered Agricultural Assistant

Collect user satisfaction rating and feedback.
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Fig 1: Steps of Agricultural Advisory System
3.3 Model Training and Data Sources

Training Data for NLP: Agricultural extension documents, chatbot transcripts, FAQs from agricultural departments
(e.g., FAO, ICAR, and ICRISAT).Training Data for CNN: Public and proprietary datasets of crop diseases (e.g.,
PlantVillage, iSDA).Language Model Fine-Tuning: A fine-tuned LLM (e.g., GPT-NeoX) on agriculture-specific
corpora to ensure contextual relevance and accuracy. Multilingual Corpus: Translated agricultural texts and crowd-
sourced queries in local languages (Swahili, Hindi, Luganda, etc.).

3.4 Deployment Environment

The chatbot is hosted in a cloud-native architecture (AWS/GCP) and uses serverless functions to scale with the query
volume. The models were deployed via APIs with fallback redundancy for high availability. For edge regions with
limited connectivity, the system uses lightweight versions (e.g., BERT-Tiny and MobileNet) and offline voice kits.

4. RELATED WORK

In this section, we review research on (1) Agricultural Extension Services and ICT Interventions, (2) Chatbots and
Conversation Agents, and (3) Generative Al in Agriculture, thus contextualizing the key novelty of Farmer.Chat.

4.1 Agricultural Extension Services and ICT Interventions

Traditional agricultural extension services are essential for disseminating knowledge to farmers. However, in many
low- and middle-income countries, they face significant challenges, such as limited reach due to an insufficient
number of extension agents. In Kenya, for example, the agent-to-farmer ratio is estimated at 1:1000 according to
government reports (NASEP, 2012 [13]), but it can be as high as 1:4,000, far below the recommended ratio of 1:400.
Additionally, these services tend to be top-down, limiting farmer inputs and reducing engagement. While peer-
learning models, such as farmer field schools, aim to address these gaps, they often face resource limitations and
inconsistent results due to varying farming contexts, such as soil, climate, and crop variety.

4.2 Chatbots and Conversation Agents in Agriculture

Chatbots and conversational agents are increasingly used in agriculture to provide accessible information through
natural language interactions. Projects like Hello Tractor and Avaaj Otalo offer real-time advice on topics such as
weather, pest control, and farming techniques via voice or text systems.Although rule-based chatbots are useful for
structured, repetitive tasks, they struggle with complex, dynamic queries that require context awareness. Systems such
as Avaaj Otalo handle voice queries but are limited in their ability to adapt to evolving agricultural needs. Similarly,
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FarmChat faces challenges in offering personalized advice due to variables like soil type, climate, and crop variety,
and most traditional chatbots lack real-time updates and access to diverse data sources, reducing their effectiveness in
dynamic agricultural environments.In contrast, Al-driven chatbots use machine learning and natural language
processing (NLP) to deliver flexible, personalized, and data-driven responses. Studies have shown that Al systems
outperform rule-based chatbots in terms of user satisfaction, contextual understanding, and scalability. Al-driven
chatbots also adapt to real-time data and provide dynamic and personalized advice. Recent studies have highlighted
Al’s ability of Al to integrate diverse data sources to address complex agricultural needs.

Farmer.Chat builds on these advancements by leveraging Al models to offer personalized and real-time
recommendations based on dynamic and context-specific data. Unlike traditional chatbots, Farmer.Chat adapts to
changing agricultural conditions and provides tailored advice to farmers.

4.3 Generative Al in Agriculture

Advancements in generative artificial intelligence (Al), particularly large language models (LLMs) such as GPT-3 and
GPT-4, are transforming agricultural knowledge accessibility, especially in low-resource settings. Projects like Kisan.
Al has deployed LLMs to offer real-time advice on crop management and pest control. However, these systems face
challenges in adapting to diverse agricultural ecosystems because of limited knowledge bases and difficulties in
ingesting non-digital agricultural information. Additionally, the lack of robust multilingual support and inability to
handle multimodal inputs, such as images and audio, further restrict their usefulness in rural contexts.

Most existing LLM-based agricultural chatbots focus on a narrow range of crops and regions, neglecting smallholder
farmers’ complex needs. Their inability to integrate localized weather and soil data reduces their precision in
providing actionable information. Farmer.Chat addresses these limitations by supporting multiple crops, integrating
real-time weather and soil data, and delivering personalized recommendations. Its multilingual and multimodal
capabilities (audio, image, and video) make it accessible to low-literacy users, which is crucial in rural settings. Using
Retrieval-Augmented Generation (RAG) for structured and unstructured data, Farmer.Chat enhances trustworthiness
and precision.

Finally, designing Al-driven tools for low-literacy, resource-constrained populations requires intuitive and culturally
sensitive interfaces. Prior studies have demonstrated the effectiveness of voice-based systems and image-based
interfaces in increasing engagement. Furthermore, several studies highlight the importance of culturally relevant, trust-
building designs for sustainable use. Jackson et al. and Sambasivan et al. stressed the need for Al tools to align with
local practices and function well in resource-limited environments. Dell et al. underscore offline functionality, while
Amershi et al. advocate for clear feedback and user control. These insights shape the design of Farmer. Chat, ensuring
personalized, accessible, and context-aware support for low-literacy farmers.

5. RESULT

5.1 Yield responses with the Virtual Agronomist App Version

Yield responses to the Virtual Agronomist app version were encouraging, with mean yield increases of 1.4- to 1.9-fold
compared to the farmer practice (Table 4). The profits and fertilizer rates used by the control farmers were not
recorded in these earlier studies. The yields in the Virtual Agronomist plots are often constrained by management
factors. In Tanzania, VA yields were linearly related to plant population: Yield (t/ha) = 0.70 (SE=0.03) * plant
population (plants m-2), where plant population ranged from 1.6 to 4.6 plants m-2. With rice in Tanzania, there was
variation in the degree to which farmers followed the recommended nutrient plan, with some farmers not applying any
basal fertilizer at all, and yields were related to the amount of basal fertilizer applied: Yield (t/ha) = 5.6 (SE=0.4) +
0.012 (SE=2E-3) * basal fertilizer rate (kg/ha), where the basal fertilizer rate ranged from 0 to 341 kg/ha. In Uganda,
VA yields were also linearly related to plant population: Yield (t/ha) = 0.32 (SE =0.03) * plant population (plants m-
2), where plant population ranged from 1.3 to 8.7 plants m-2. These relationships suggest that when these management
factors are optimal, VA yields are several-fold higher than FP yields.

Table 5.1.1: Grain yield response using Virtual Agronomist app compared with farmer practice

Sunflower Tanzania | Lowland rice Tanzania | Maize Cote d’Ivoire Sorghum
Uganda
Mean yield (t/ha) FP 0.6 5.2 1.2 1
Mean yield (t/ha) VA 1 7.9 1.7 1.9
Number of farms 41 55 116 30
Pooled SE (t/ha) 0.034 0.207 0.12 0.174
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P<F treatment effect <0.001 <0.001 0.008 <0.001
VA/FP yield 1.7 15 14 1.9

FP = Farmer practice; VA = Virtual Agronomist. The mean yields were block-adjusted.
5.2 Uptake of Virtual Agronomist Copilot

The iSDA introduced the Virtual Agronomist copilot to multiple countries (Table 5) using different approaches. The
lead farmer model in Uganda and Kenya was primarily implemented by iSDA field staff. In Zambia, field agents were
recruited through a partnership between a policy think tank and the Ministry of Agriculture’s extension services. In
Nigeria, deployment is managed by an aggregator who signed a public-private partnership with the Niger State
Government. Some clients who have registered farmers through their own system have requested the issuance of
nutrient management plans only without using the chatbot, which the iISDA has accommodated using the geographical
coordinates of the fields. By February 17, 2025, over 100,000 plots were registered, and over four million individual
messages were received from farmers.

Table 5.2.1: Virtual Agronomist copilot activities by country and crop (17.02 2025)

Country | Crop | Number of lead farmers | Number of famers | Number of nutrient plans
Kenya Maize 3,559 65,308 74,147
Kenya Rice Na 416 453
Kenya | Coffee Na 4,213 5,003
Malawi | Maize 195 642 769
Uganda | Maize 807 13,845 20,731
Uganda Rice Na 559 758
Uganda | Coffee Na 785 1,192
Zambia | Maize 144 1,543 1,553
Total 5,035 87,311 1,04,606

na = not available

Based on the current data (Table 5.2.1), a lead farmer managed an average of 17 plots. On average, each farmer had
1.2 plots registered with a Virtual Agronomist. Ultimately, the intended method of spreading Virtual Agronomist is
via lead farmer to lead farmer “referrals. This allows farmers to share the Virtual Agronomist phone number and train
one another so that the spread is not hampered by central training capacity. This approach is gaining traction; in the
2025 season in Bulambuli, Uganda, 272 lead farmers have been registered via referrals versus 162 without referrals.
Lead farmers trained by the iSDA registered 13,159 plots; therefore, 43% of the plots were registered by farmers not
trained by the iSDA.

Rapid spontaneous uptake occurred in Kericho County (Figure 7). According to the 2019 Kenya Population and
Housing Census, the total number of farmers with registered plots was 52,578, compared with 150,625 farming
households, of which 67,739 were subsistence farmers (54). The estimated penetration of the county’s maize farmer
population was approximately 78%. A local agent in Kericho, the Virtual Agronomist, was deployed in partnership
with seven coffee cooperatives in Kenya through a local agent in Kericho. This collaboration provided over 5,000
coffee farmers in Kericho with tailored agronomic advice, with each farmer paying for the service provided. — The
dynamics of tool usage are illustrated for the September 2024 — January 2025 season in Bulambuli, Uganda (Figure 8).
The farmers predominantly grew maize and sunflowers. Tool usage generally follows the cropping calendar; plot
registration, nutrient plan generation, and planting date recording are performed early in the season. Emergence checks
and pest and disease scouting are conducted while the crop is growing, and harvest monitoring is completed after the
harvest.
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The uptake of Virtual Agronomist tools in Bulambuli was strong. Of the 7,571 registered plots, 98% generated a
nutrient management plan, 65% recorded planting dates, 69% conducted emergence scouting, and 81% reported
harvesting data. The dashboard results also indicated that farmers frequently used plant health scouting tools,
primarily for monitoring pests and diseases. These uptake rates reflect strong farmer engagement and seamless
integration of digital agronomic support systems. The results demonstrated active participation in key stages of the
crop cycle, enabling farmers to enhance their agronomic practice. Overall, these trends suggest that farmers are
beginning to recognize the value of Virtual Agronomist tools and actively incorporate them into their daily activities.

5.3 Delivery Costs

The marginal cost of delivery is currently approximately $1.50 per plot per season and can be separated into
technology and incentive costs. Focusing first on the technology costs, our marginal cost of delivery is approximately
$0.04 per plot per season. Most of this cost is due to the use of the OpenAl API. During 2024, we were able to
significantly reduce Al costs, predominantly because of selecting a price/performance optimal model version of
ChatGPT (gpt3.5-turbo) and reengineering prompts to use roughly 10 times fewer tokens during each API call.
WhatsApp messages are generally charged per 24-hour conversation, meaning that a lead farmer can serve many
farmers within the same time frame. Central technology costs (database hosting and serverless functions) cost $12 per
day at the current scale. The total technology cost is estimated at less than $0.20 per plot per season.

Incentive costs were set at approximately $1 per plot per season, as outlined in Section 4, with incentives spread
throughout the season to encourage engagement beyond the nutrient plan and planting. With the additional 20%
referral incentive and allowing for transaction costs incurred via mobile money payments, the total incentive cost is
below $1.30 per plot, per season. As this marginal cost of delivery is dominated by incentive costs, a clear path to
significant cost reduction is in the combination of (1) encouraging an increasing number of farmers to use the system
directly as connectivity allows, reducing the need for incentives, and (2) bundling the system with other initiatives
where lead farmers are already incentivized to help neighboring farmers. Farmers who grow high-value crops pay for
the service directly at a rate of $3-$4 per plot per season depending on the crop and location, and the subsequent profit
can pay for the service of one or two farmers growing lower-value crops. In practice, we observed a ratio of 1:5 paying
vs. free-at-point-of-use farmers, so we believe that any cross-subsidy would be limited due to insufficient farmer
numbers in higher value chains.

5.4 Farm level Impacts of Copilot

The impact of farm level on yield, profit, and farmers’ quality of agronomic management was assessed through (1)
retrospective cohort studies and (2) mining chatbot data. In retrospective studies, a random sample of approximately
100 farmers practicing Virtual Agronomist per location and crop was compared with a similar sample of nearest-
neighbor farmers who did not use Virtual Agronomist (control of farmer practice). A questionnaire was administered
to both groups of farmers to collect data on yield, expenditure, management practices, and yield-limiting factors. The
plot areas were recorded using a GPS. Chatbot data provide a large sample of thousands of plots, providing
information on farmers’ existing soil and crop management practices, and yield-limiting factors.  Preliminary results
of retrospective studies on rice in Kenya (55) and maize in Uganda (56) will be reported in a subsequent publication,
but generally validate the positive outcomes obtained with the app version of the Virtual Agronomists. These early
indications are discussed in the next section in terms of the factors that drive profits.

Examples of information that can be mined from chatbot data are presented in Table 6. In this cohort, the average ratio
of farmers to lead farmers was 66. The high number of emergence checks and harvest monitors is encouraging. The
median plot sizes are small, and maize has low input characterized by a high frequency of intercropping, continuous
maize cropping, and relatively low yields and profit. The frequency of poor emergence indicates a significant problem
in crop establishment. Less than 20% of farmers planned to apply manure, and the median application rates were low
(approximately 1 t/ha) among those who did.

Table 5.4.1: Summary of data mined from chatbot data for maize in Bulambuli District in Uganda

Variable Value

Number of farmers 3,501
Number of lead farmers 53

Number of nutrient plans 6,062

Number of emergence checks 4,805
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Number of harvest monitors 5,187
Median plot size (ha) 0.2
Median farmer’s existing yield (t/ha) 25
Planned manure frequency (%) 19
Median manure rate of those applying (t/ha) 1.2
Median expected profit ($/ha) 400
Intercropping frequency (%) 80
Continuous maize frequency (%) 87
High manuring rate frequency (%) 21
Emergence <75% frequency (%) 27
Female farmer frequency (%) 33

6. CONCLUSION

This study demonstrates that Farmer. Chat holds significant potential to democratize agricultural knowledge,
especially for smallholder farmers operating in resource-constrained environments. By focusing on accessibility for
low-literacy and rural users, the platform exemplifies how Al systems can be designed to serve marginalized groups.
Key findings revealed notable improvements in user engagement, query clarity, and response accuracy, while also
identifying important challenges such as gender bias and the need for inclusive design practices. The integration of
voice-based interactions and follow-up prompts enhanced the intuitiveness of Human-Al collaboration, enabling
farmers to interact with the system more naturally. The real-world adoption of Farmer. Chat validates its capability to
improve farming practices, including disease management and crop cycle planning, thus addressing the critical
challenges faced by smallholder farmers.

This research also has larger implications for Al and human-computer interaction (HCI) as it provides knowledge and
understanding when it comes to developing equitable Al tools, with applicability across sectors. As we develop as a
field in Al, concurrent and relevant challenges remain related to lack of inclusive language, cultural relevance and bias
across various Al-driven products and practices; all of which should strive to achieve equitable outcomes for all users.
Also, user feedback will allow for continued iteration with the usability of the platform to become better through
continuous engagement with the platform, ultimately leading to a wider consumer base for adoption, with impacts. As
Farmer.Chat continues to leverage neural networks, with recent rapid advances in natural language processing, real-
time, contextual support and assistance in how agricultural knowledge is provided and actioned has never been more
prevalent. This approach to essentially expand or condense agriculture operations that are applicable to sustainable
agriculture contribute to an improvement in farming operations albeit in real-time by bringing relevant information for
further action or implementation..

Future Research Directions

Integration with Wearable Devices: Future work could explore the integration of the chatbot with wearable devices to
enhance real-time agriculture chatbot and provide personalized insights. Enhanced Natural Language Understanding:
Improving the chatbot's natural language processing capabilities for nuanced conversations and context-aware
responses would be a valuable avenue for future development.
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