
 
www.ijprems.com 

editor@ijprems.com 

INTERNATIONAL JOURNAL OF PROGRESSIVE 

RESEARCH IN ENGINEERING MANAGEMENT 

AND SCIENCE (IJPREMS) 

(Int Peer Reviewed Journal) 

Vol. 05, Issue 10, October 2025, pp : 930-933 

e-ISSN : 

2583-1062 

Impact 

Factor : 

7.001 
 

@International Journal Of Progressive Research In Engineering Management And Science           930  

CANCER DETECTION IN HISTOPATHOLOGY IMAGES: INSIGHTS 

FROM EXPLORATORY DATA ANALYSIS 

K. Anandhi
1
, R. Sinduja

2 

1
PG Student, RVS College Of Engineering And Technology, Kannampalayam, Sulur, India. 

2
Assistant Professor, RVS College Of Engineering And Technology, Kannampalayam, Sulur, India. 

DOI: https://www.doi.org/10.58257/IJPREMS44307 

ABSTRACT 

Cancer is a leading cause of death worldwide, and the growing demand for early and accurate diagnosis has intensified 

research in automated histopathological image analysis. Histopathology, the microscopic examination of tissue 

samples, remains the gold standard in cancer detection. However, manual inspection is time-consuming, subjective, 

and prone to inter-observer variability. To address these challenges, this study focuses on exploratory data analysis 

(EDA) of the publicly available Histopathologic Cancer Detection dataset from Kaggle, which contains over 220,000 

labeled tissue image patches. The EDA covers class distribution, pixel intensity histograms, box plots, and correlation 

analysis. The findings highlight balanced class representation, staining heterogeneity, and distinct intensity patterns 

that carry discriminative features. Furthermore, EDA reveals subtle inter-channel correlations and staining variability 

that are essential to understand tissue morphology. These insights not only characterize dataset quality but also 

provide a foundation for selecting effective preprocessing and augmentation strategies in downstream studies. 
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1. INTRODUCTION 

Cancer remains a major global health challenge, accounting for millions of deaths each year. Early detection and 

accurate diagnosis play a critical role in improving treatment outcomes and survival rates. Histopathology, the 

microscopic examination of tissue biopsies, is regarded as the gold standard in cancer detection. However, manual 

inspection is time-consuming, prone to fatigue, and subject to inter-observer variability, leading to inconsistencies in 

diagnosis. 

Before applying advanced deep learning techniques, it is essential to conduct Exploratory Data Analysis (EDA) to 

understand dataset characteristics. EDA provides valuable insights into class distribution, pixel intensity variation, 

staining differences, and overall dataset quality. These insights inform preprocessing strategies, augmentation choices, 

and model design. In this paper, we focus on performing a detailed EDA of the Histopathologic Cancer Detection 

dataset [1]. The findings from this analysis serve as a foundation for future work involving CNNs [4], Vision 

Transformers [3,5], and explainable AI techniques [2]. 

2. RELATED WORK 

CNN-based Histopathology Analysis: Convolutional Neural Networks (CNNs) have been widely used in 

histopathology image analysis[4]. They excel at learning hierarchical spatial features and have achieved high accuracy 

in cancer detection tasks. The merit of CNNs lies in their ability to automatically extract discriminative features. 

However, they primarily capture local dependencies and may fail to capture global contextual relationships, limiting 

performance in complex tissue structures [7]. 

Transformer Models for Vision: Vision Transformers (ViTs) have recently emerged as powerful alternatives to CNNs 

in computer vision[3]. Their key strength is the ability to model global dependencies using self-attention mechanisms, 

which is beneficial for capturing long-range contextual features in histopathology images. The main drawback is their 

requirement for large-scale training data and computational resources, making them less effective in smaller medical 

datasets unless transfer learning is applied [6]. 

Hybrid CNN-Transformer Models: Recent research has explored hybrid architectures that combine CNNs and 

Transformers. CNNs handle low-level feature extraction effectively, while Transformers capture global dependencies. 

This combination offers superior performance, particularly in complex medical imaging tasks[5]. However, the added 

architectural complexity increases computational cost and training time, which may limit real-time clinical 

deployment. 

Explainable AI (XAI): Explainability methods such as Grad-CAM provide heatmaps that highlight regions influencing 

model predictions [2]. The advantage of these techniques is that they improve transparency and trust in automated 

systems, which is critical for adoption in healthcare. Nevertheless, such methods may sometimes produce coarse or 

ambiguous heatmaps that do not perfectly align with clinical understanding [9]. 
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3. DATASET DESCRIPTION 

The study uses the publicly available Histopathologic Cancer Detection dataset from Kaggle [1]. It consists of over 

220,000 labeled histopathology image patches, each of size 96x96 pixels, extracted from lymph node sections of 

breast cancer patients. The dataset is organized into two categories: Normal (benign) and OSCC (Oral Squamous Cell 

Carcinoma, malignant). 

4. EXPLORATORY DATA ANALYSIS (EDA) 

Exploratory Data Analysis (EDA) is an essential step in understanding the structure, distribution, and characteristics of 

a dataset before building predictive models. In medical imaging, EDA provides valuable insights into class balance, 

staining variability, pixel intensity patterns, and tissue heterogeneity. Such observations guide preprocessing, 

augmentation, and model design strategies. The following subsections present the EDA carried out on the 

Histopathologic Cancer Detection dataset [1]. 

4.1 Class Distribution 

Bar charts and pie charts are used to visualize the distribution of cancerous and non-cancerous patches. 

 

Figure 4.1: Class distribution of Normal vs. OSCC patches. 

From the above figures, it is observed that the dataset is relatively balanced between cancerous and benign patches. 

This balance reduces the risk of bias during model training and ensures that classification models can generalize 

effectively to both classes. 

4.2 Pixel Intensity Distribution – RGB Histograms 

RGB histograms are plotted for both classes to analyze staining differences and pixel intensity ranges. 

 

Figure 4.2: RGB intensity histograms for Normal vs. OSCC patches. 

From the above figures, it is observed that cancerous patches exhibit higher variation in the red channel due to dense 

nuclear staining, whereas non-cancerous patches display more uniform intensity distributions. This suggests that 

nuclear staining patterns provide useful discriminative features for cancer detection. 

4.3 Pixel Intensity Comparison – Box Plots 

Box plots summarize the variability of pixel intensities for each RGB channel in both classes. 
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Figure 4.3: Box plots of RGB intensities in Normal vs. OSCC patches. 

From the above figures, it is observed that cancerous patches show wider intensity variability, particularly in the red 

channel. This highlights the heterogeneous nuclear and cytoplasmic structures present in malignant tissue, compared 

to the more uniform patterns seen in benign samples. 

4.4 Correlation Analysis 

Correlation coefficients between the RGB channels are computed, and correlation heatmaps are plotted for cancerous 

and non-cancerous patches. 

 

Figure 4.4: RGB channel correlations in Normal patches and correlations in OSCC patches. 

From the above figures, it is observed that while RGB channels are strongly correlated across all patches, slight 

differences appear between cancerous and benign groups. This indicates that inter-channel relationships vary with 

tissue type, suggesting that color correlations may hold discriminative information for classification tasks. 

5. FUTURE WORK 

Future work will expand this exploratory data analysis to include brightness and contrast distributions, texture-based 

feature analysis, and dimensionality reduction techniques like PCA and t-SNE to visualize class separability. These 

extended analyses will provide a deeper understanding of tissue variability and structural differences. 

Beyond EDA, research will focus on developing CNN baselines (e.g., ResNet50, EfficientNet), Vision Transformers 

with pretraining, and hybrid CNN–Transformer architectures (e.g., CTransPath) [6]. Self-supervised learning 

strategies such as Masked Autoencoders will be applied to improve feature learning [8]. Explainability methods like 

Grad-CAM, SHAP, and attention rollout will ensure model predictions align with histopathological understanding [9]. 
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Additionally, domain adaptation will be explored to handle staining variability across institutions, moving toward 

clinically robust deployment. 

The future work will also focus on developing and evaluating deep learning models such as Convolutional Neural 

Networks (CNNs) and Vision Transformers (ViTs). These models will be trained on the dataset using preprocessing 

and augmentation strategies guided by the current EDA findings. Explainable AI (XAI) methods such as Grad-CAM 

and attention map visualizations will then be integrated to provide interpretability, ensuring that automated predictions 

align with histopathological understanding and clinical trust. 

6. CONCLUSION 

This study presented an exploratory data analysis (EDA) of the Histopathologic Cancer Detection dataset. The 

analyses included class distribution, pixel intensity distribution through RGB histograms, pixel intensity comparison 

using box plots, and correlation analysis of RGB channels. 

From these analyses, it is observed that the dataset is reasonably balanced, ensuring fair representation of both 

cancerous and benign patches. The RGB histograms revealed noticeable staining variations, particularly in the red 

channel, which is associated with nuclear features in cancerous tissue. Box plots further confirmed that malignant 

patches exhibit higher variability in pixel intensities, reflecting the heterogeneity of cancerous regions. Correlation 

analysis demonstrated subtle differences in inter-channel relationships between cancerous and non-cancerous patches, 

suggesting that color correlations carry useful discriminative information. 

The findings from this EDA provide important guidance for preprocessing, normalization, and augmentation 

strategies, and at the same time create a strong basis for future exploration of CNN and Vision Transformer models 

integrated with explainable AI. 
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