

CHARACTERISTICS OF FLEXIBLE PAVEMENTS: DETAILED STUDY BY USING FWD AND IIT-PAVE SOFTWARE

Sanjoy Ghosh¹, Deepak Mathur²

¹M. Tech Scholar, Kautilya Institute of Technology & Engineering, Jaipur, India.

²Associate Professor, Kautilya Institute of Technology & Engineering, Jaipur, India.

sanjayghosh432@gmail.com, ²mathurdeepak1507@gmail.com

ABSTRACT

This paper evaluates and compares the deflection of flexible pavement using two methods: The Falling Weight Deflectometer (FWD) test and IIT-Pave software. The data for the project road NH-129 (Numaligarh to Khatkhati) in Assam is utilized for the current investigation. The subgrade modulus and the pavement thickness are obtained from the FWD result and the trial pit data, respectively. These values are then used to calculate the deflection of flexible pavement using IIT-Pave software. Two types of loading are considered for the calculation of deflection values: 20 kN with dual wheel and 40 kN with single wheel. The results of the study reveal that the deflection values calculated from IIT-Pave software are on average 22% and 5% lower than the FWD results for 20 kN dual wheel loading and 40 kN single wheel loading, respectively. During the calculation of deflection values, horizontal tensile strain and vertical compressive strain is also determined for above mentioned two types of loading. The result reveals than the tensile strain values for 40 kN single wheel load are average 8% more than strain values for 20 kN dual wheel load for bituminous layer thickness more than 60mm. And where the bituminous layer is around less than 60mm, strain values for 40 kN single wheel load are average 9% less than strain values for 20 kN dual wheel load. Further for compressive strain, it is average 21% more for 40 kN single wheel than 20 kN dual wheel load. In case of growth of traffic, considering good pavement condition overlay design has been done for first 13 km stretch for different traffic. From the overlay design, it is found that, for increase of each 10 MSA traffic, there is an increase of around 50mm bituminous overlay thickness. These findings provide insight into the reliability and accuracy of IIT-Pave software for assessing the deflection of flexible pavements and emphasize the importance of selecting appropriate loading conditions for obtaining accurate deflection measurements.

Keywords: Pavement Evaluation, FWD, Structural Evaluation, Flexible Pavement, IIT-PAVE

1. INTRODUCTION

Pavement surface deflection measurements are the primary means of evaluating a flexible pavement structure and rigid pavement load transfer. Although other measurements can be made that reflect (to some degree) a pavement's structural condition, surface deflection is an important pavement evaluation method because the magnitude and shape of pavement deflection is a function of traffic (type and volume), pavement structural section, temperature affecting the pavement structure and moisture affecting the pavement structure. Deflection measurements can be used in back calculation methods to determine pavement structural layer stiffness and the subgrade resilient modulus. Thus, many characteristics of a flexible pavement can be determined by measuring its deflection in response to load. Furthermore, pavement deflection measurements are non-destructive.

Surface deflection is measured as a pavement surface's vertical deflected distance as a result of an applied (either static or dynamic) load. The more advanced measurement devices record this vertical deflection in multiple locations, which provides a more complete characterization of pavement deflection. The area of pavement deflection under and near the load application is collectively known as the "deflection basin".

There are three broad categories of nondestructive deflection testing equipment:

- Static deflections
- Steady state deflections
- Impact load deflections (FWD)

Subgrade rutting criteria is used in these guidelines for the design of bituminous pavements. An average rut depth of 20 mm or more, measured along the wheel paths, is considered in these guidelines as critical or failure rutting condition. The equivalent number of standard axle load (80 kN) repetitions that can be served by the pavement, before the critical average rut depth of 20 mm or more occurs. The rutting performance model developed initially based on the MoRTH R-6 Research Scheme performance data was subsequently developed into two separate models for two different reliability levels based on the additional performance data collected for MoRTH R-56 Research Scheme.

IIT-PAVE software is used in these guidelines for the analysis of pavements. For the computation of stresses, strains and deflections in the pavement, thicknesses and elastic properties (elastic modulus and Poisson's ratio) of different

layers are the main inputs. Guidelines for the selection of the elastic modulus and Poisson's ratio values of different pavement layers are given in different sections of the guidelines. For the calculation of vertical compressive strain on top of the subgrade, horizontal tensile strain at the bottom of the bottom bituminous layer and the horizontal tensile strain at the bottom of base layer, the analysis is done for a standard axle load of 80 kN (single axle with dual wheels). Only one set of dual wheels, each wheel carrying 20 kN load with the centre to centre spacing of 310 mm between the two wheels, applied at the pavement surface shall be considered for the analysis. The shape of the contact area of the tyre is assumed in the analysis to be circular. The uniform vertical contact stress shall be considered as 0.56 MPa. However, when fatigue damage analysis of base is carried out, the contact pressure used for analysis shall be 0.80 MPa. The layer interface condition was assumed to be fully bound. The materials are assumed to be isotropic.

Here FWD is used to validate the deflection result from IIT-PAVE. All impact load devices deliver a transient impulse load to the pavement surface. The subsequent pavement response (deflection basin) is measured by a series of sensors. The most common type of equipment is the falling weight deflectometer (FWD). The FWD can either be mounted in a vehicle or on a trailer and is equipped with a weight and several velocity transducer sensors. To perform a test, the vehicle is stopped and the loading plate (weight) is positioned over the desired location. The sensors are then lowered to the pavement surface and the weight is dropped. Multiple tests can be performed on the same location using different weight drop heights (ASTM, 2000[1]). The advantage of an impact load response measuring device over a steady state deflection measuring device is that it is quicker, the impact load can be easily varied and it more accurately simulates the transient loading of traffic. Results from FWD tests are often communicated using the FWD AREA Parameter.

2. OBJECTIVE

The objectives of the study are as follows:

- To compare the deflection obtained from FWD test and that for IIT PAVE analysis for different axle loading.
- To compare the horizontal and vertical strain for different axle loading.
- To compare the overlay thickness for a sample stretch for different loading.

1. Scope of Work:

To meet the above objectives in the present study, the scope of the work is outlined as follows:

- Trial pits of were dug at the pavement shoulder interface, extending through the pavement layers down to the subgrade level and the pavement composition (i.e. Bituminous layer, Granular Layer) thickness has been noted down.
- Nondestructive FWD (Falling Weight Deflectometer) test on existing carriageway at specified intervals as per IRC 115-2014 were conducted and deflection values are measured along with subgrade modulus at all locations are tabulated.
- Based on the above collected data, deflection value is calculated by IIT-PAVE Software for each location for the following considerations:
 - Single Wheel Load = 20 KN, Dual Wheel
 - Single Wheel Load = 40 KN, Single Wheel

And the following criteria has been kept same for above two considerations:

- Resilient modulus of Bituminous Layer (VG40) = 3000 MPa
- Poissons's Ratio = 0.35 for all layers
- Tyre Pressure = 0.56 MPa

- The deflection value obtained from the IIT-PAVE has been compared and validated with the deflection value of FWD test.
- The horizontal and vertical strains for the two types of loading have also been compared
- Further, overlay design has been carried out for a selected section with different traffic and compared.

3. METHODOLOGY

a) Collection of Trial Pit data from site:

The trial pit data for the project road NH-129 (Numaligarh to Khatkhati) in Assam is utilized for the current investigation.

b) Collection of Falling Weight Deflectometer (FWD) Test Data:

The FWD test data for the project road NH-129 (Numaligarh to Khatkhati) in Assam is utilized for the current investigation.

c) Evaluation of Deflection of Pavement Layers with IIT-PAVE:

Based on the above collected data, deflection value is calculated by IIT-PAVE Software for each location for the following considerations:

Table 1: Results from IIT-Pave Analysis

Locat ion Ex. Chai nage (KM)	Site Data			Required Modulus	Result with Dual Wheel load 20KN		Result with Single Wheel load 40KN		Deflec tion from FWD (mm)
	Bitumi nous Layer (mm)	Gran ular Layer (mm)	Elasti c Modu lus of Subg rade Soil from FWD (Mpa)	Resilient modulus of the Granular Layer (MPa)	Displace ment at Subgrade Top (mm)	Displace ment at Bitumino us Bottom (mm)	Displacem ent at Subgrade Top (mm)	Displacem ent at Bituminou s Bottom (mm)	
200	90	330	112	304.49	0.2593	0.363	0.2721	0.4316	0.4790 76
500	91	340	112	308.61	0.2534	0.3572	0.2654	0.4241	0.4584 521
1000	93	348	112	311.86	0.2479	0.3511	0.2592	0.4156	0.4459 388
1500	89	352	110	307.87	0.253	0.3603	0.2646	0.4293	0.4323 051
2000	86	356	109.9	309.16	0.2533	0.3628	0.2653	0.4358	0.4824 306
2500	84	368	110	314.09	0.2486	0.3607	0.2597	0.4331	0.4361 317
3000	87	366	110	313.32	0.2475	0.3568	0.2584	0.427	0.4731 16
3500	85	368	110	314.09	0.2479	0.359	0.2565	0.4307	0.4509 429
4000	86	372	96	275.45	0.2784	0.4025	0.2903	0.4789	0.5334 946
4500	85	374	111	319.26	0.243	0.3538	0.2536	0.4244	0.4286 44
5000	83	378	102	294.78	0.2623	0.3829	0.2736	0.4593	0.5084 451
5500	82	384	102	296.88	0.26	0.3821	0.271	0.4588	0.5051 388
6000	80	380	108	312.86	0.2497	0.3685	0.2607	0.4437	0.4712 094
6500	92	384	110	320.16	0.2359	0.3431	0.2454	0.4073	0.4386 621
7000	105	386	110	320.91	0.2271	0.3269	0.2355	0.3804	0.3807 804
7500	118	396	108	318.73	0.2194	0.3138	0.2265	0.3585	0.3828 78
8000	130	399	110	325.73	0.2082	0.2952	0.2145	0.3332	0.3338 664

Site Data				Required Modulus	Result with Dual Wheel load 20KN		Result with Single Wheel load 40KN		Deflection from FWD (mm)
Location Ex. Chai nage (KM)	Bituminous Layer (mm)	Granular Layer (mm)	Elastic Modulus of Subgrade Soil from FWD (Mpa)	Resilient modulus of the Granular Layer (MPa)	Displacement at Subgrade Top (mm)	Displacement at Bituminous Bottom (mm)	Displacement at Subgrade Top (mm)	Displacement at Bituminous Bottom (mm)	
8500	145	408	110	329.02	0.1978	0.278	0.2031	0.3096	0.3445 848
9000	160	408	109.9	328.72	0.191	0.2649	0.1957	0.2915	0.3081 155
9500	171	410	108	323.75	0.1885	0.259	0.1929	0.2828	0.2963 744
10000	180	410	110	329.74	0.1816	0.248	0.1857	0.2696	0.2787 664
10500	175	406	110	328.29	0.1848	0.2528	0.1891	0.2755	0.2815 61
11000	161	396	110	324.63	0.1939	0.2668	0.1989	0.2933	0.3050 32
11500	145	374	110	316.38	0.2089	0.2875	0.2151	0.3198	0.3335 514
12000	125	352	112	313.47	0.225	0.3108	0.2331	0.3523	0.3818 932
12500	110	335	112	306.56	0.2422	0.3348	0.2523	0.3861	0.4119 687
13000	91	318	109.9	293.85	0.2696	0.3736	0.2811	0.4354	0.4623 948
13500	73	296	110	284.78	0.2928	0.4091	0.3179	0.5055	0.5196 54
14000	65	286	109.7	279.64	0.3145	0.4108	0.337	0.5398	0.5916 208
14500	58	276	110	275.95	0.3288	0.4643	0.3549	0.5713	0.6330 004
15000	45	250	107	256.74	0.3764	0.5367	0.4145	0.664	0.7323 92
15500	48	268	107	264.90	0.3559	0.5121	0.3879	0.6322	0.6992 132
16000	51	288	112	286.40	0.3212	0.4685	0.3471	0.5767	0.6038 049
16500	55	299	111	288.67	0.3116	0.454	0.3346	0.5579	0.6120 163

Site Data				Required Modulus	Result with Dual Wheel load 20KN		Result with Single Wheel load 40KN		Deflection from FWD (mm)
Location Ex. Chai nage (KM)	Bituminous Layer (mm)	Granular Layer (mm)	Elastic Modulus of Subgrade Soil from FWD (Mpa)	Resilient modulus of the Granular Layer (MPa)	Displacement at Subgrade Top (mm)	Displacement at Bituminous Bottom (mm)	Displacement at Subgrade Top (mm)	Displacement at Bituminous Bottom (mm)	
17000	54	332	111	302.60	0.2898	0.4371	0.3085	0.5356	0.5345 288
17500	52	351	108	301.89	0.2868	0.4425	0.3042	0.5471	0.5580 42
18000	58	366	107	304.78	0.2754	0.4232	0.2904	0.517	0.5314 76
18500	57	375	107	308.13	0.271	0.421	0.2854	0.5143	0.5328 148
19000	60	382	107	310.70	0.2649	0.4106	0.2782	0.501	0.5300 58
19500	63	388	107	312.89	0.2596	0.4012	0.2721	0.4887	0.5300 58
20000	62	390	107	313.61	0.2592	0.4024	0.2717	0.4904	0.5300 58
20500	61	390	107	313.61	0.26	0.4046	0.2725	0.4933	0.5300 58
21000	65	390	107	313.61	0.2572	0.396	0.2693	0.4819	0.5300 58
21500	59	390	107	313.61	0.2614	0.4091	0.2742	0.4991	0.5300 58
22000	63	390	107	313.61	0.2586	0.4003	0.2709	0.4875	0.5148
22500	67	390	103	301.89	0.2661	0.4054	0.2765	0.4926	0.5453 082
23000	69	390	103	301.89	0.2637	0.4012	0.2757	0.4868	0.5432 688
23500	71	390	103	301.89	0.2623	0.3972	0.2741	0.4812	0.5331 696
24000	72	390	103	301.89	0.2616	0.3951	0.2733	0.4784	0.5027 984
24500	74	390	109	319.47	0.2467	0.3721	0.2577	0.4501	0.4487 497
25000	75	400	95	281.63	0.2745	0.4135	0.286	0.4987	0.5515 622
25500	71	392	114	334.90	0.2375	0.3622	0.2482	0.4392	0.4633 56

Site Data				Required Modulus	Result with Dual Wheel load 20KN		Result with Single Wheel load 40KN		Deflection from FWD (mm)
Location Ex. Chai nage (KM)	Bituminous Layer (mm)	Granular Layer (mm)	Elastic Modulus of Subgrade Soil from FWD (Mpa)	Resilient modulus of the Granular Layer (MPa)	Displacement at Subgrade Top (mm)	Displacement at Bituminous Bottom (mm)	Displacement at Subgrade Top (mm)	Displacement at Bituminous Bottom (mm)	
26000	69	388	108	315.81	0.3523	0.3856	0.2649	0.468	0.47736
26500	61	372	101	289.80	0.2848	0.4351	0.2995	0.5307	0.5349456
27000	67	384	101	293.97	0.2733	0.4154	0.2862	0.5047	0.5561794
27500	59	359	101	285.20	0.2943	0.4469	0.3106	0.546	0.566202
28000	52	312	101	267.74	0.3336	0.4945	0.3573	0.6074	0.6699622
28500	45	290	117	300.12	0.3127	0.4662	0.339	0.5727	0.5944626
29000	43	260	117	285.73	0.3393	0.4937	0.3728	0.6085	0.6772605
29500	35	245	110	261.55	0.3846	0.5646	0.4286	0.6935	0.7191595
30000	30	240	110	259.13	0.3966	0.5891	0.4454	0.719	0.759983
30500	35	257	110	267.23	0.3726	0.5539	0.4126	0.6788	0.6916972
31000	41	272	110	274.14	0.3513	0.5197	0.3844	0.6392	0.7069552
31500	49	299	110	286.07	0.3203	0.4748	0.3451	0.5836	0.6051932
32000	55	331	114	310.35	0.2823	0.4248	0.3006	0.5205	0.5522505
32500	67	372	116.9	335.42	0.2441	0.3698	0.2564	0.45	0.46665
33000	53	370	117	334.89	0.2546	0.3998	0.2688	0.4885	0.4899655
33500	49	396	114	336.43	0.2499	0.4063	0.2627	0.4955	0.52523
34000	51	419	115	348.12	0.2354	0.3881	0.2463	0.473	0.481041

Site Data				Required Modulus	Result with Dual Wheel load 20KN		Result with Single Wheel load 40KN		Deflection from FWD (mm)
Location Ex. Chai nage (KM)	Bituminous Layer (mm)	Granular Layer (mm)	Elastic Modulus of Subgrade Soil from FWD (Mpa)	Resilient modulus of the Granular Layer (MPa)	Displacement at Subgrade Top (mm)	Displacement at Bituminous Bottom (mm)	Displacement at Subgrade Top (mm)	Displacement at Bituminous Bottom (mm)	
34500	54	442	117	362.79	0.2199	0.3664	0.2291	0.4463	0.4454 074
35000	60	460	115	363.05	0.2129	0.3535	0.2201	0.4302	0.4697 784
35500	61	460	115	363.05	0.2124	0.3516	0.2204	0.4278	0.4697 784
36000	63	452	115	360.20	0.2145	0.3508	0.2227	0.4266	0.4726 728
36500	59	434	103	316.77	0.2486	0.4031	0.2589	0.4911	0.4999 398
37000	63	388	106	309.96	0.2619	0.4046	0.2745	0.2928	0.3176 88
37500	64	350	106	295.91	0.2825	0.4209	0.2988	0.5133	0.3176 88
38000	65	330	106	288.18	0.2941	0.4292	0.3116	0.5236	0.3176 88
55000	55	218	105	236.88	0.4019	0.5375	0.4447	0.6677	0.7131 036
55500	58	227	105	241.23	0.3882	0.5201	0.4265	0.6441	0.7131 036
56000	61	250	105	251.94	0.3623	0.4935	0.3935	0.6079	0.7131 036
56500	60	288	105	268.50	0.3316	0.4624	0.356	0.4509	0.7131 036
57000	57	314	105	279.15	0.3152	0.4622	0.3365	0.439	0.7131 036
57500	59	332	105	286.24	0.3008	0.4464	0.3194	0.4251	0.7131 036
58000	55	362	105	297.60	0.2852	0.44	0.3013	0.4139	0.7131 036
58500	51	376	105	302.73	0.28	0.4429	0.2954	0.5414	0.7131 036
59000	49	390	105	307.75	0.2735	0.4306	0.2878	0.5383	0.7131 036

Site Data				Required Modulus	Result with Dual Wheel load 20KN		Result with Single Wheel load 40KN		Deflection from FWD (mm)
Location Ex. Chai nage (KM)	Bituminous Layer (mm)	Granular Layer (mm)	Elastic Modulus of Subgrade Soil from FWD (Mpa)	Resilient modulus of the Granular Layer (MPa)	Displacement at Subgrade Top (mm)	Displacement at Bituminous Bottom (mm)	Displacement at Subgrade Top (mm)	Displacement at Bituminous Bottom (mm)	
59500	53	405	105	313.02	0.2624	0.4232	0.2749	0.5165	0.7131 036
60000	50	410	105	314.75	0.2619	0.4282	0.2744	0.5225	0.5825 875
60500	51	398	105	310.58	0.2675	0.4316	0.2809	0.5269	0.5542 988
61000	49	374	105	302.00	0.2828	0.4493	0.2986	0.5491	0.6122 465
61500	48	360	105	296.86	0.2922	0.4599	0.3097	0.5624	0.6051 424
62000	53	346	112	311.05	0.2794	0.4284	0.2965	0.5245	0.5250 245
62500	55	334	112	306.15	0.2852	0.43	0.3033	0.5267	0.5551 418
63000	51	305	112	293.89	0.3085	0.4576	0.3314	0.5621	0.6008 849
63500	49	284	111.9	284.35	0.3268	0.4774	0.354	0.5879	0.6037 733
64000	48	295	112	289.51	0.3189	0.4726	0.3443	0.5811	0.5805 189
64500	52	303	102	266.86	0.3375	0.4961	0.3624	0.61	0.6734 4
65000	50	304	102	267.25	0.3389	0.5017	0.3642	0.6168	0.6408 552
65500	52	300	102	265.67	0.3399	0.4982	0.3653	0.6126	0.6426 174
66000	55	313	102	270.79	0.3267	0.4807	0.3492	0.59	0.6106 5
66500	51	311	102	270.01	0.3323	0.4938	0.3562	0.6067	0.6364 283
67000	50	308	102	268.83	0.3299	0.4989	0.3604	0.6132	0.6604 164
67500	57	302	114	297.81	0.2998	0.4363	0.3214	0.5357	0.5646 278

Site Data				Required Modulus	Result with Dual Wheel load 20KN		Result with Single Wheel load 40KN		Deflection from FWD (mm)
Location Ex. Chai nage (KM)	Bituminous Layer (mm)	Granular Layer (mm)	Elastic Modulus of Subgrade Soil from FWD (Mpa)	Resilient modulus of the Granular Layer (MPa)	Displacement at Subgrade Top (mm)	Displacement at Bituminous Bottom (mm)	Displacement at Subgrade Top (mm)	Displacement at Bituminous Bottom (mm)	
68000	59	299	105	273.07	0.3242	0.4661	0.3472	0.5719	0.6353 809
68500	56	289	105	268.92	0.3352	0.481	0.3606	0.5915	0.6045 13
69000	59	292	106	272.75	0.3266	0.4666	0.3505	0.5729	0.6330 545
69500	58	296	106	274.42	0.3246	0.4668	0.3482	0.5732	0.6330 545
70000	60	300	106	276.08	0.3196	0.4589	0.3419	0.5627	0.6330 545
70500	62	293	106	273.17	0.3227	0.458	0.3456	0.5613	0.6330 545
71000	67	285	106	269.78	0.3234	0.4502	0.3461	0.5502	0.6330 545
71500	71	279	106	267.21	0.3236	0.4441	0.3461	0.5412	0.6330 545
72000	75	272	111	276.64	0.3108	0.4214	0.3324	0.5123	0.5107 631
72500	77	264	105	258.19	0.3311	0.4428	0.3542	0.5368	0.5695 448
73000	81	266	111	273.87	0.3087	0.4118	0.3296	0.4981	0.5364 537
73500	83	267	111	274.34	0.3049	0.4092	0.3261	0.4914	0.5364 537
74000	80	268	111	274.80	0.3084	0.4135	0.3292	0.4997	0.5364 537
74500	84	267	111	274.34	0.3049	0.4076	0.3248	0.4885	0.5364 537
75000	85	268	101	250.04	0.3307	0.4415	0.3517	0.5225	0.5674 35
75500	81	276	101	253.37	0.3294	0.4438	0.3505	0.5324	0.5760 568
76000	79	292	101	259.88	0.32	0.4375	0.3396	0.5274	0.5760 568

Site Data				Required Modulus	Result with Dual Wheel load 20KN		Result with Single Wheel load 40KN		Deflection from FWD (mm)
Location Ex. Chai nage (KM)	Bituminous Layer (mm)	Granular Layer (mm)	Elastic Modulus of Subgrade Soil from FWD (Mpa)	Resilient modulus of the Granular Layer (MPa)	Displacement at Subgrade Top (mm)	Displacement at Bituminous Bottom (mm)	Displacement at Subgrade Top (mm)	Displacement at Bituminous Bottom (mm)	
76500	72	309	101	266.58	0.3154	0.4431	0.3345	0.5381	0.5760 568
77000	65	328	101	273.84	0.3091	0.4491	0.3276	0.5478	0.5932 674
77500	50	329	110	298.65	0.2978	0.4531	0.3179	0.5555	0.5993 845
78000	48	340	108	297.59	0.2974	0.4598	0.3167	0.563	0.5798 9
78500	45	354	108	303.04	0.2908	0.4601	0.3091	0.5621	0.5798 9
79000	41	358	108	304.58	0.2917	0.4694	0.3102	0.5718	0.5838 078
79500	35	360	107.9	305.06	0.2969	0.4902	0.3153	0.589	0.6225 73
80000	30	368	108	308.38	0.2951	0.497	0.3143	0.596	0.6347 4
80500	39	370	108	309.13	0.2858	0.4683	0.3033	0.5688	0.5773 32
81000	46	371	112	320.97	0.27	0.4331	0.2857	0.5285	0.5839 925
81500	58	372	112	321.36	0.2605	0.4033	0.2744	0.4925	0.5383 025
82000	66	336	112	306.97	0.2749	0.4034	0.2908	0.4919	0.5115 76
82500	78	327	109.9	297.56	0.2752	0.39	0.2902	0.4713	0.5038 197
83000	81	329	110	298.65	0.2714	0.3831	0.2858	0.4617	0.4732 425
83500	82	339	110	302.70	0.265	0.3767	0.2785	0.4534	0.4570 272
84000	85	353	110	308.26	0.2554	0.3653	0.2674	0.4383	0.4549 554
84500	88	360	112	316.65	0.2456	0.3523	0.2566	0.4211	0.4484 715

Site Data				Required Modulus	Result with Dual Wheel load 20KN		Result with Single Wheel load 40KN		Deflection from FWD (mm)
Location Ex. Chai nage (KM)	Bituminous Layer (mm)	Granular Layer (mm)	Elastic Modulus of Subgrade Soil from FWD (Mpa)	Resilient modulus of the Granular Layer (MPa)	Displacement at Subgrade Top (mm)	Displacement at Bituminous Bottom (mm)	Displacement at Subgrade Top (mm)	Displacement at Bituminous Bottom (mm)	
85000	90	370	112	320.58	0.2395	0.3456	0.2498	0.4118	0.4398 024
85500	81	357	112	315.46	0.2519	0.3647	0.2641	0.4393	0.4735 654
86000	75	344	112	310.24	0.2632	0.3814	0.2771	0.4681	0.4735 654
86500	71	342	112	309.43	0.2674	0.3901	0.282	0.4739	0.4735 654
87000	64	330	112	304.49	0.2801	0.4109	0.297	0.5017	0.5588 938
87500	61	316	112	298.61	0.2916	0.4253	0.3107	0.5207	0.5644 388
88000	59	315	116	308.84	0.2845	0.4174	0.3037	0.5119	0.5717 923
88500	55	300	116	302.13	0.2982	0.4358	0.3202	0.5354	0.5771 612
89000	54	288	116	296.63	0.3078	0.4457	0.3319	0.5484	0.5632 068
89500	52	277	113	283.94	0.326	0.4692	0.3535	0.5782	0.5886 076
90000	50	270	110	273.24	0.3426	0.4917	0.3728	0.6067	0.6212 608
90500	51	270	110	273.24	0.3416	0.489	0.3712	0.6029	0.6674 103
91000	49	269	110	272.78	0.3446	0.4956	0.3754	0.6115	0.6757 075
91500	48	274	109.9	274.80	0.3418	0.4955	0.3718	0.611	0.6274 97
92000	53	271	110	273.69	0.3384	0.4819	0.3672	0.5943	0.6263 922
92500	55	268	107	264.90	0.3476	0.4901	0.3769	0.6044	0.6606 092
93000	51	301	96.9	252.76	0.3572	0.5243	0.3838	0.6449	0.7035 859

Site Data				Required Modulus	Result with Dual Wheel load 20KN		Result with Single Wheel load 40KN		Deflection from FWD (mm)
Location Ex. Chai nage (KM)	Bituminous Layer (mm)	Granular Layer (mm)	Elastic Modulus of Subgrade Soil from FWD (Mpa)	Resilient modulus of the Granular Layer (MPa)	Displacement at Subgrade Top (mm)	Displacement at Bituminous Bottom (mm)	Displacement at Subgrade Top (mm)	Displacement at Bituminous Bottom (mm)	
93500	49	296	97	251.12	0.3634	0.5341	0.3917	0.6575	0.69432
94000	48	315	97	258.25	0.3486	0.5237	0.3731	0.6434	0.7000192
94500	52	329	96.9	263.08	0.3337	0.5019	0.3556	0.6157	0.6304768
95000	50	331	97	264.07	0.3339	0.5063	0.356	0.6212	0.627412
95500	51	330	97	263.71	0.3336	0.5039	0.3556	0.6182	0.6726016
96000	49	337	112	307.38	0.2884	0.4439	0.3073	0.5436	0.5620824
96500	48	352	112	313.47	0.2797	0.4381	0.2971	0.5357	0.5598065
97000	53	369	112	320.19	0.2658	0.4164	0.2807	0.509	0.516635
97500	55	382	112	325.22	0.2573	0.4053	0.2708	0.495	0.497475
98000	51	401	112	332.40	0.2502	0.4057	0.2626	0.495	0.544995
98500	49	410	112	335.74	0.247	0.4063	0.259	0.4953	0.4977765
99000	48	423	112	340.49	0.2414	0.4028	0.2526	0.4905	0.538569
99500	52	431	112	343.37	0.2352	0.3901	0.2445	0.4754	0.5196122
100000	50	440	112	346.58	0.2323	0.3908	0.2423	0.4759	0.4906529

5. DISCUSSION

a) Deflection of Flexible Pavements:

Two types of loading are considered for the calculation of deflection values: 20 kN with dual wheel and 40 kN with single wheel. The results of the study reveal that the deflection values calculated from IIT-Pave software are on average 22% and 5% lower than the FWD results for 20 kN dual wheel loading and 40 kN single wheel loading, respectively. These findings provide insight into the reliability and accuracy of IIT-Pave software for assessing the deflection of flexible pavements and emphasize the importance of selecting appropriate loading conditions for obtaining accurate

deflection measurements. A comparison graph is plotted below in Figure 1 to show the deflections for the two cases along with the deflection values of the FWD test.

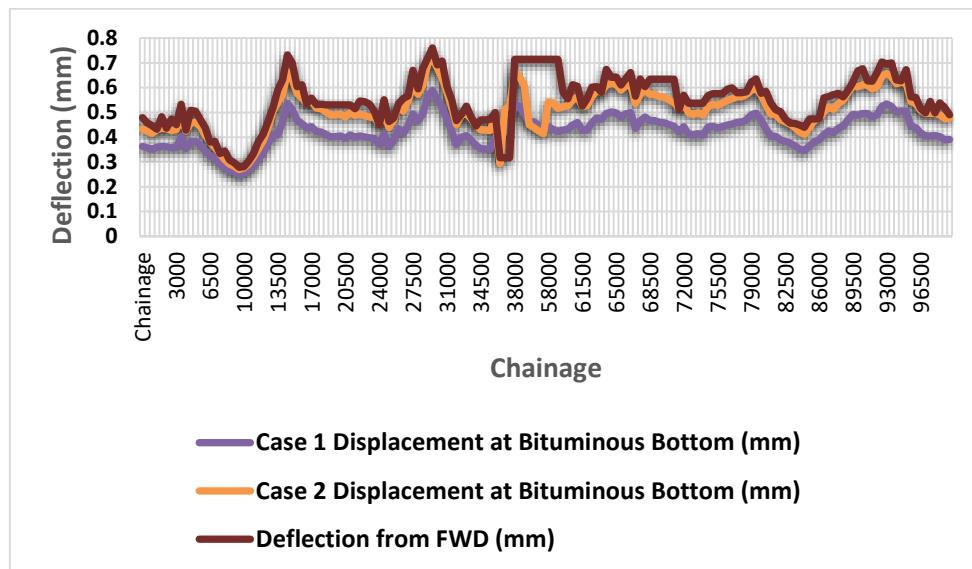


Figure 1: Comparison of Deflection

b) Horizontal & Vertical Strain:

Two types of loading are considered for the calculation of strains: 20 kN with dual wheel and 40 kN with single wheel. A comparison graph is plotted below in Figure 2 & 3 to show the strains for the two cases.

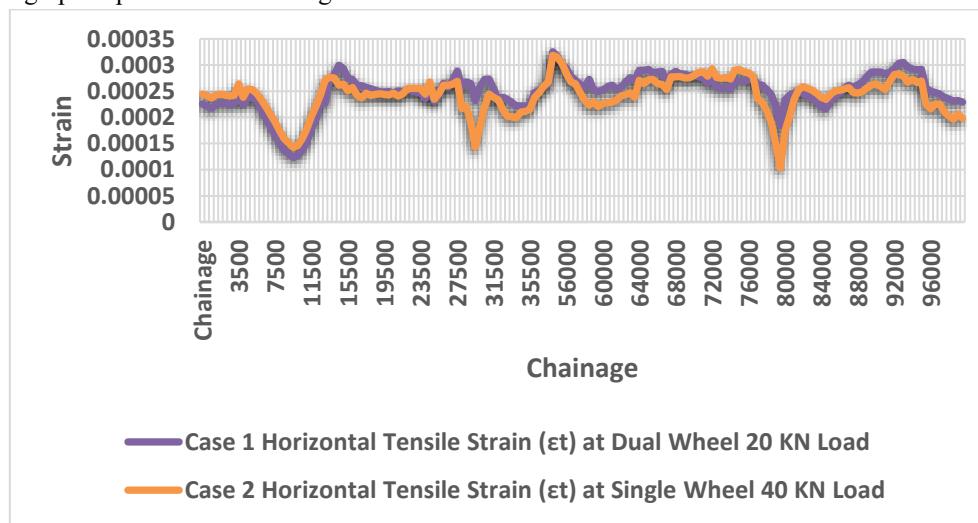


Figure 2: Comparison of Horizontal Tensile Strain

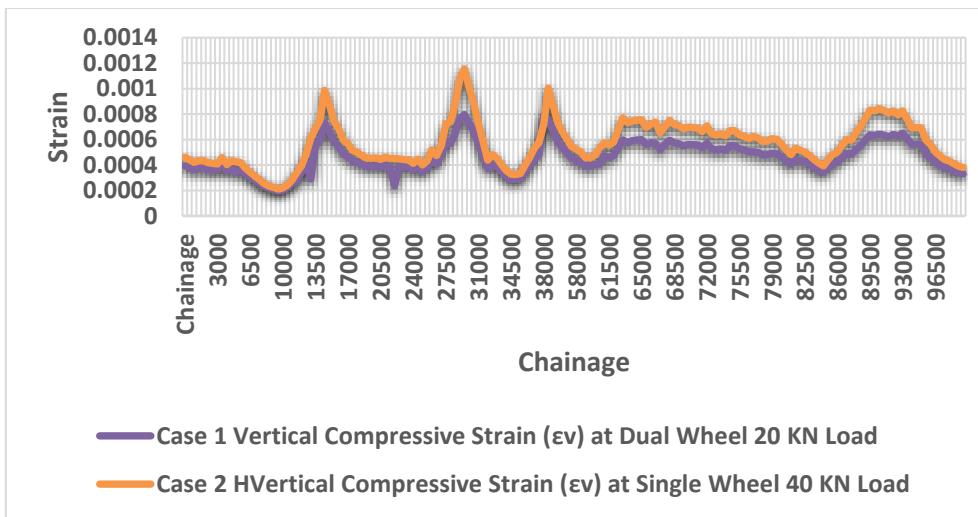


Figure 3: Comparison of Vertical Tensile Strain

c) Overlay thickness for different MSA:

As per the site pavement condition, it is found that, for the first 13 km stretch is road condition, subgrade CBR is good and sufficient embankment height is present for overlay criteria. Hence, this stretch is selected for overlay design for different traffic.

- Average thickness of Existing Bituminous Layer = 87mm
- Average thickness of Existing Granular Layer = 359mm
- Average Elastic Modulus of Subgrade Soil = 109 MPa
- Resilient modulus of the Granular Layer = 307.786 MPa

Based on the above data the overlay thickness for different MSA given in following Table 2.

Table 2 : Overlay thickness for different MSA

MSA	Allowable Horizontal Tensile Strain at Bottom of Bituminous Layer	Allowable Vertical Compressive Strain at Top of Subgrade Layer	Required Overlay Thickness (mm)	Horizontal Tensile Strain at Bottom of Bituminous Layer	Vertical Compressive Strain at Top of Subgrade Layer
20	0.000225442	0.000454945	30	0.0001881	0.0002328
30	0.000203127	0.000416024	80	0.0001948	0.0003555
40	0.000188647	0.000390446	140	0.0001820	0.0003515
50	0.00017813	0.000371694	190	0.0001738	0.0003521
60	0.000169974	0.000357043	240	0.0001643	0.0003461

A graph is plotted below in Figure 4 to overlay thickness for different msa.

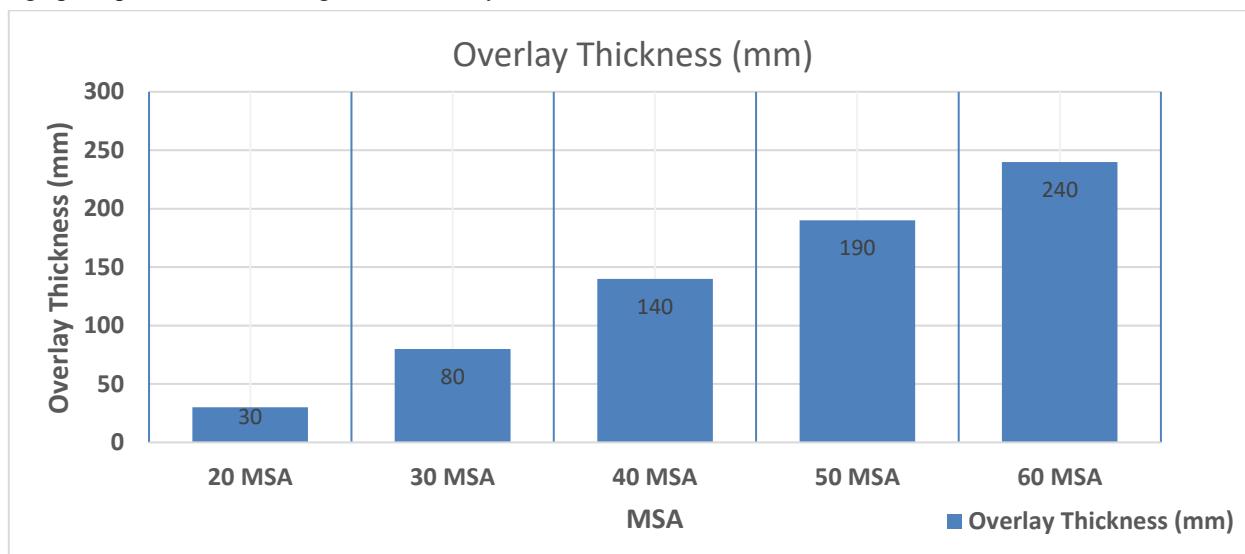


Figure 4: Overlay thickness for different MSA

As per Table 1 & Figure 1 following observations can be drawn:

- a. Deflection values calculated from IIT-Pave software are on average 22% and 5% lower than the FWD results for 20 kN dual wheel loading and 40 kN single wheel loading, respectively.
- b. For first 13km, the deflection values obtained from IIT-Pave for 20 kN dual wheel load is average 10% lower than the deflection values obtained from FWD results.
- c. In figure 1, it can also be observed that from 55000 to 60000, the line for FWD deflection is straight as FWD results cannot be done due to poor road condition.
- d. It can also be observed that, the deflection for each loading as well as FWD are decreasing from chainage 6000m till 10000m and again increasing till 13000m. From Table 5.3 it can be observed that the subgrade modulus is increasing from chainage 6000m to till 10000m and again decreasing till 13000m and the existing pavement thickness is also in higher side (more than 500mm) near chainage 10000m.
- e. This same less deflection can be observed near chainage 29000m where modulus of subgrade reaction is 117 MPa and near design chainage 88000m to 89000m where modulus of subgrade reaction is 116 MPa.

As per Table 1, Figure 2 & 3 following observations can be drawn:

- For the first 13 km, tensile strain values for 40 kN single wheel load are average 8% more than strain values for 20 kN dual wheel load.
- The tensile strain values for 40 kN single wheel load are average 8% more than strain values for 20 kN dual wheel load for bituminous layer thickness more than 60mm.
- And where the bituminous layer is around less than 60mm, strain values for 40 kN single wheel load are average 9% less than strain values for 20 kN dual wheel load.
- Further for compressive strain, it is average 21% more for 40 kN single wheel compared to 20 kN dual wheel load.
- It can also be observed that, the strains for each loading as well as FWD are decreasing from chainage 6000m till 10000m and again increasing till 13000m. From Table 5.3 it can be observed that the subgrade modulus is increasing from chainage 6000m to till 10000m and again decreasing till 13000m and the existing pavement thickness is also in higher side (more than 500mm) near chainage 10000m.
- This same less strain can be observed near chainage 29000m where modulus of subgrade reaction is 117 MPa and near design chainage 88000m to 89000m where modulus of subgrade reaction is 116 MPa.
- Further, in Figure 3, it can be observed that, the compressive strain reaches the peak value near chainage 15000m, 30000m & 55000m. From Table 5.3, it can be observed that the pavement thickness is on lower side (i.e., 295mm, 270mm and 273mm respectively).
- The strain lines are flat from chainage 16000m to 25000m and from 64000m to 74000m. From Table 1, it can be observed that, the modulus of subgrade reaction and the pavement thickness are not varying too much.

Hence it is very clear that, strength of subgrade modulus is very important factor for determination of deflection of pavement and generated strain (tensile and compressive). Where, subgrade strength is good, deflection and strains are on lower side. And where the subgrade strength is poor, deflection and strains are on higher side.

As per Table 2, Figure 6.4 following observations can be drawn:

- For increase of each 10 MSA traffic, there is an increase of around 50mm bituminous overlay thickness, which is normal as cumulative wheel load will also increase with traffic.
- For increase of traffic from 20 MSA to 30 MSA bituminous overlay thickness increases for 167%, from 30 MSA to 40 MSA bituminous overlay thickness increases for 75%, from 40 MSA to 50 MSA bituminous overlay thickness increases for 36%, from 50 MSA to 60 MSA bituminous overlay thickness increases for 26% (Refer. Figure 5), however this percentage increase for overlay thickness is site specific, it may vary in different location.

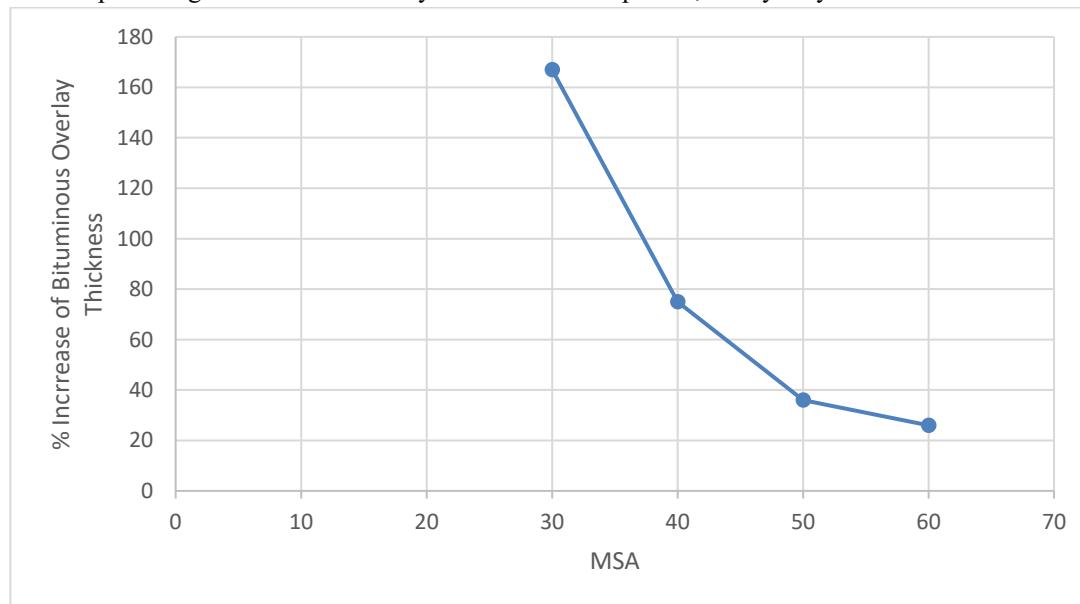


Figure 5: Percentage Increase of Bituminous Overlay for Different MSA

6. CONCLUSION

The following conclusions may be drawn from the present study:

- The IIT-Pave analysis result has been successfully validated with the FWD test data reported by M/s. Voyants Solutions Pvt. Ltd. for existing Numaligarh – Khatkhati Road (NH-129) at Assam, India.
- Two types of loading are considered for the calculation of deflection values: 20 kN with dual wheel and 40 kN with single wheel. The results of the study reveal that the deflection values calculated from IIT-Pave software are on

average 22% and 5% lower than the FWD results for 20 kN dual wheel loading and 40 kN single wheel loading, respectively.

- c. These findings provide insight into the reliability and accuracy of IIT-Pave software for assessing the deflection of flexible pavements and emphasize the importance of selecting appropriate loading conditions for obtaining accurate deflection measurements.
- d. During the calculation of deflection values, horizontal tensile strain and vertical compressive strain is also determined for above mentioned two types of loading. The result reveals than the tensile strain values for 40 kN single wheel load are average 8% more than strain values for 20 kN dual wheel load for bituminous layer thickness more than 60mm. And where the bituminous layer is around less than 60mm, strain values for 40 kN single wheel load are average 9% less than strain values for 20 kN dual wheel load.
- e. Further for compressive strain, it is average 21% more for 40 kN single wheel compared to 20 kN dual wheel load.
- f. From this study, it is very clear that, strength of subgrade modulus is very important factor for determination of deflection of pavement and generated strain (tensile and compressive). Where, subgrade strength is good, deflection and strains are on lower side. And where the subgrade strength is poor, deflection and strains are on higher side.

From the overlay design, it is found that, for increase of each 10 MSA traffic, there is an increase of around 50mm bituminous overlay thickness.

7. REFERENCES

- [1] Ming Zhang, Nan-nan Li and Min Yang (2022) - "The Multi-Factor Control and Evaluation of Highway Soft Soil Subgrade Stability"
- [2] A Zhafirah, A K Somantri, E Walujodjati and S Mulyana (2021) - "Verification of modulus of subgrade reaction experimental based on plate deflection"
- [3] Junhui Zhang, Le Ding, Ling Zeng, Qianfeng Gao and Fan Gu (2020) - "Using portable falling weight deflectometer to determine treatment depth of subgrades in highway reconstruction of Southern China"
- [4] MANOJ RAMAKANT ANAOKAR (2020) - "Performance Enhancement of Flexible Pavements Founded on Expansive Subgrades"
- [5] Binanda Khungur Narzary (2020) - "Estimation of Equivalent Modulus of Fine-Grained Subgrade Soil"
- [6] Md Jibon (2019) - "Effect of Subgrade Conditions on Pavement Analysis and Performance Prediction: A Study for Idaho Conditions"
- [7] Abhishek Garg, B.L. Swami, Mansha Swami (2019) - "Comparative Study for Strengthening of Existing Flexible Pavement Using Falling Weight Deflectometer and Benkelman Beam Deflection Techniques"
- [8] M. Razali, N. A. Che Mahmood, K. A. Hashim, S. Mansor, N. I. Zainuddin (2018) - "The falling weight deflectometer (FWD) for characterization bonding state of subgrade"
- [9] Adel Djellalia, Mohamed Salah Laouarb, Behrooz Saghafic, Abdelkader Houam (2018) - "Deformation Analyses of Pavement Structure Caused by Swell -Shrink of Subgrade Soil"
- [10] László Gáspár (2017) - "Predicting subgrade soil strength using FWD and meteorological time series data"
- [11] IRC 37: 2018 - Guidelines for The Design of Flexible Pavements (Fourth Revision)
- [12] IRC:115-2014 "Guidelines for Structural Evaluation and Strengthening of Flexible Road Pavements Using Falling Weight Deflectometer (FWD) Technique"
- [13] Falling Weight Deflectometer Test data and Trial Pit data of Numaligarh – Khatkhati Road (NH-129) by Voyants Solutions Pvt. Ltd.
- [14] IRC: SP:84-2019 "Manual of Specifications and Standards for Four Laning of Highways (Second Revision)"
- [15] IRC:81-1997 "Guidelines for strengthening of flexible road pavements using Benkelman Beam deflection technique"
- [16] IRC: 73 -2023 "Geometric Design Standards for Non-Urban (Rural) Roads"
- [17] IRC: SP:73-2018 "Manual of Specifications and Standards for Two Laning of Highways (Second Revision)"