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ABSTRACT

We have introduced subclasses of analytic functions and have obtained sharp upper bounds of the Fekete Szego
functional |a; — puaZ| for the analytic function f(z) = z+ Yo ,a, z" |z| <1 belonging to these classes and
subclasses.
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1. INTRODUCTION

Let A denote the class of functions of the form

f@)=z+ Xi,a,2" (1.1)

analytic in the unit disc given by E = {z:|z| < 1|}. Let § be the class of analytic functions of the form (1.1), which
are univalent in E. In 1916, Bieber Bach ( [1], [2] ) proved that |a,| < 2 for the functions f(z) eS. In 1923, Léwner
[10] proved that |a;| < 3 for the functions f(z) &S..

With the known estimates |a,| < 2and |as| < 3, it was natural to seek some relation between a, and a,? for the class
§,Fekete and Szegd [4] used Lowner’s method to prove the following well known result for the class §.

Let f(z) &8, then

3-4pifp<0;
las — pa?| < 1+zexp(;—fﬁ),ifo <pu<t1; (1.2)
4p—3,ifu=> 1.

The inequality (1.2) plays a very important role in determining estimates of higher coefficients for some sub classes
S([3], [9D).

Let us define some subclasses of §.

We denote by S*, the class of univalent starlike functions

g@)=z+ Z b,z" € A and satisfying the condition

n=2

z9(z)
Re (g(z)) >0,z €E. (1.3)

We denote by X, the class of univalent convex functions and satisfying the condition

h(z) = z+chz",z EA
n=2

(zn' @)
Re e >0,z €E. (1.4)
A function f(z) € A is said to be close to convex if there exists g(z) € S* such that
zf1(z)
e (—g(z) )>0,z€E (1.5)

The class of close to convex functions is denoted by C and was introduced by Kaplan [7] and it was shown by him that
all close to convex functions are univalent.

S*(A,B) = {f(z) € A;fo(—;” <2 -1<B<A<1lzEe nz} (1.6)
K(A,B) = f(z)ecﬂ-w<““z ~1<B<A<1z€E (1.7)
’ " f1(2) 1+Bz’ - -’ )

It is obvious that S*(4, B) is a subclass of S* and K (4, B) is a subclass of ¥.

Several authors studied and introduced various classes and subclasses of univalent analytic functions and established
Fekete Szego inequality for the same. ([3]-[9], [12]-15], [22]-[62])
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N. Kaur [11] introduced a new subclass as and have established its coefficient inequality.

’ B , n1-B
S0 ) = {f(Z) cua-o (1) +a<M> SELLIY IE}

f(2) '@ 1

We will deal with the subclass of S*(f, f', «, B) defined as follows in the present paper:

1 N
S*(f.f" a, B, A, B) = {f(z) €A (l-a) (ﬁ)ﬁ ta (M) < e IE} (1.8)

f@ f1(2) 1+Bz’

We will deal with the subclass S*(f, f', &, 8, &) defined as follows in our next paper:

! N
S*(f,f B, &) = {f(z) €A (1-a) (ﬁ)ﬂ +a (M) < (ﬂ)a;z € [E} (1.9)

f@) f1(2) 1~z

Symbol < stands for subordination, which we define as follows:

Principle of Subordination: Let f(z) and F(z) be two functions analytic in E. Then f(z) is called subordinate to
F(z) in E if there exists a function w(z) analytic in E satisfying the conditions w(0) = 0 and |w(z)| < 1 such that
f(2) = F(w(2)); ze E and we write f(z) < F(2).

By U, we denote the class of analytic bounded functions of the form w(z) = Y7, d,z",w(0) = 0,|w(2)| < 1.

(1.10)
Itis knownthat |d| < 1,|d,| < 1 — |d,|? (1.12)
PRELIMINARY LEMMAS:
For0 < ¢ < 1,wewritew(z) = (f:—:z) so that
% = 1+ 2cz+22%+ -, (2.1)
2. MAIN RESULTS
THEORE 2.1
Let f(z) € S*(f,f', a, B, A, B), then The results are sharp.
las — paj3|
(A—B)?(8a + 3B + 4a® — 12a?B — 9ap? — 7af) B (A —B)?
4Ba+f —4ap){(1 — a)B + 2a(1 - B)}? {A-—wp+2a@-pr"
. (A—B)8a +3f + 4a® — 12a’B — 9ap? — 7af — H{(1 — &) + 2a(1 — B)}* 31
fu< Ba + B —4ap) ’ @1
(A—-B)
2Ba + B —4ap)
) i (A—B)8a +3p + 4a? — 12a%f — 9af? — 7af — 4{(1 — a)B + 2a(1 — B)}? <us<
Ba+ L —4ap)
H(A —a)B +2a(1 - )} — (A—B)8a + 3B + 4a’ — 12a*f — 9af* — Taf 32
Ba+p —4ap) ' (3.2
(A - B)? _ (A-B)*(8a + 3B + 4a’ — 12a°p — 9ap* — 7ap)
{1 =) +2a(1 - p)}? H 4Ba+p —4ap){(1 - ) +2a(1-p)}F
s 4{(1—-a)B +2a(1—B)}> —(A—B)8a + 3B + 4a? — 12a?B — 9apf? — 7ap 33
\lf”_ Ba+p —4ap) @.
Proof 2.2. By definition of S*(f, f', «, B, A, B), we have
1 1-B8
zf'(z B zf'(z 1+Aw(z
(1 - a) (]I:(—i))) +a (%) = T\NEZ;; W(Z) eUu. (34)
Expanding the series (3.4), we get
(1 - ) {1+ Bayz + @Bay + EE2ad)z + — — —} + a{l + 2(1 - f)ayz + 2(1 — f)Bay— (B + 2)a3)z? + — —
-}=0+@A—-B)c;z+ (A—B)(c; — Bc;)z? +— — -). (3.5)

Identifying terms in (3.5), we get
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_ (A-B)
@ = daprzaarp) 1 (3.6)
_ (A-B) (A-B)2(8a+3f+4a%-12a?f—9ap%-7ap)
% = 2Garp-sap) 2 + 1Gatp—tsap)(-mprza(-p2 L 3.7)
From (3.6) and (3.7), we obtain
2 (A-B) (A-B)%(8a+3B+4a?—12a%B-9ap%-7ap) _ (A-B)? 2
a3 = HA2 = S Garp—tap) 2 4Ba+B-4aBf){(1-a)B+2a(1-B)}2 {(1-a)B+2a(1-B)}2 ”] e (3.8)
Taking absolute value, (3.8) can be rewritten as
9 (A-B) (A-B)? 8a+3B+4a’-12a*B—9aB?~7ap 2
las = nazl < 3a+f-4ap lez| + {1-a)B+2a(1-B)}? 4(3a+p—-4ap) 'u| et (3.9)
Using (1.9) in (3.9), we get
(A-B)
2 2
az; —uaj| < ———(1 —|c
las —uadl < 5 —per (1= lal)
N (A—B)? 8a + 3B + 4a? — 12a?B — 9af? — 7af 5
— C
{(A-—a)f +2a(1- PP 43a + f — 4ap) Hlet
(A-B) (A-B)? 8a+3B+4a’-12a?B-9aB%-7ap {1-a)B+2a(1-B)}?
= 3a+B—-4ap + {(1-a)B+2a(1-p)}? [ 4(Ba+p—-4ap) - - (A—B)(3a+,8—4-a,8)] |C1|2' (3'10)
. 8a+3f+4a’-12a?B-9ap%-7ap
Casel: u < 2Gatp—tap)
(3.10) can be rewritten as
9 (A-B) (A-B)? (A-B)8a+3B+4a®~12a°B—9aB?~7aB-4{(1-a)B+2a(1-B)}* 2
las — paz < 3a+p—4ap {(1—a)/3+2a(1—ﬁ)}2[ (3a+B—4ap) M] leal™.
(3.11)
i (A-B)8a+3B+4a’—-12a?B-9aB?—7af—4{(1-a)B+2a(1-B)}?
Subcase | (): u < Gatp—1ap) :
Using (1.9), (3.11) becomes
2 (A-B)*(8a+3B+4a®~12a*B—9ap*~7aB) (4A-B)?
las = e | < G e paep - pr2at-p7 (a-opr2at-ppr (3.12)
. (A-B)8a+3B+4a?—12a%B-9aB?*-7af-4{(1-a)f+2a(1-B)}>
Subcase | (b): u = Garp—iap) .
We obtain from (3.11)
2 (A-B)
las —pa; < 3atp—tap (3.13)
. sa+3B+4a’—12a%B—9aB%-7apf
Casell: u = 2Gatp—tad)
Preceding as in case I, we get
o 1 1 _ 4{(1-a)B+2a(1-B)}*~(A-B)8a+3B+4a’~12a*B-9aB*~7ap 2
las — paz < 3a+f—4ap + {(1—a)B+2a(1—B)}2[ (3a+B—-4ap) ]|C1| - (314)
. 4{(1-a)B+2a(1-B)}*—(A-B)8a+3B+4a’-12a%f—9aB?*-7af
Subcase Il (a): u < Gatp—tap)
(3.14) takes the form
— a2 < _ATB)
la — uaj < 2 (3.15)
Combining subcase | (b) and subcase Il (a), we obtain
2 (A-B) ., (A-B)8a+3B+4a’-12a%B-9aB?*-7aB-4{(1-a)B+2a(1-B)}?
|a3 'uaZl = 3a+p-4af f Ba+p-4ap) sps
4{(1-a)B+2a(1-B)Y>—(A-B)8a+3B+4a’—12a%B—9aB%-7apf (3.16)
Ba+p—-4ap) ’
. 4{(1-a)B+2a(1-B)}>—(A-B)8a+3B+4a’—12a%B—9aB%~7af
Subcase Il (b): u = Gatp—tap)
Preceding as in subcase | (a), we get
2 (A-B)? _ (4-B)*(8a+3B+4a®~12a*B-9aB?~7ap)
las = k| S o preaa P * T T aGar fsapG-wprzaG-p)P (3.17)

Combining (3.12), (3.16) and (3.17), the theorem is proved.
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Corollary 2.3: Puttinga =1,8 =0,4A = 1,B = —1 in the theorem, we get
(1 —wifus 1;
1. l<y< 4
lay —pa2| < { 31 SH=73
4
p—Llifpu=
3
These estimates were derived by Keogh and Merkes [8] and are results for the class of univalent convex functions.
Corollary 2.3: Puttinga =0,8 =1,A =1,B = —1 in the theorem, we get

1

a, —pa?| < 1
las — pas| 1if§SM31;

k4u =3,ifu=1
These estimates were derived by Keogh and Merkes [8] and are results for the class of univalent starlike functions.
Corollary 2.4: Putting A = 1,B = —1 in the theorem, we get

las — pajl
1 [Sa + 38 + 4a? — 12a?B — 9af? — 7af 4
(= a)f +2a(1 - P Ba + f — 4af) H
] 8a + 3 + 4a? — B? — 3ap? — 7af
h =< 4(3a + B — 4ap) ;
1
3a+ L —4af
< l_f8a+3ﬁ’+40(2—ﬁz—30([)’2—701[?SMS
4Ba + B —4aB)
8a + 3B +8a? + p? — 24a?p — 6af? — 7af
4Ba + f — 4af) ’
1 A _8a+3ﬁ+4a2 —12a%B — 9apB? — 7ap
(A-op+2a@-pr[™ Ga + f — 4af) '
i 8a + 3B + 8a? + B — 24a?B — 6aB? — 7ap

4(Ba + B —4ap)
These estimates were derived by N. Kaur [11] and are results for the subclass S*(f, f', a, 8) of univalent starlike
functions.
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