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ABSTRACT 

We have introduced subclasses of analytic functions and have obtained sharp upper bounds of the Fekete Szego 

functional |𝑎3 − µ𝑎2
2| for the analytic function 𝑓(𝑧) =  𝑧 +  ∑ 𝑎𝑛

∞
𝑛=2 𝑧𝑛 , |𝑧| < 1 belonging to these classes and 

subclasses. 

Keywords: Univalent functions, Starlike functions, Close to convex functions and bounded functions. 

1. INTRODUCTION 

Let 𝓐 denote the class of functions of the form 

𝑓(𝑧) =  𝑧 + ∑ 𝑎𝑛
∞
𝑛=2 𝑧𝑛                                             (1.1) 

analytic in the unit disc given by 𝔼 = {𝑧: |𝑧| < 1|}. Let 𝓢 be the class of analytic functions of the form (1.1), which 

are univalent in 𝔼. In 1916, Bieber Bach ( [1], [2] ) proved that |𝑎2| ≤ 2 for the functions 𝑓(𝑧)Î𝓢. In 1923, Löwner 

[10] proved that |𝑎3| ≤ 3 for the functions 𝑓(𝑧)Î𝓢..  

With the known estimates |𝑎2| ≤ 2and |𝑎3| ≤ 3, it was natural to seek some relation between 𝑎3 and 𝑎2
2 for the class 

𝓢,Fekete and Szegö [4] used Löwner’s method to prove the following well known result for the class 𝓢.  

Let 𝑓(𝑧) Î𝓢, then 

|𝑎3 − µ𝑎2
2| ≤ [

3 − 4µ, 𝑖𝑓 µ ≤ 0;                             

1 + 2 exp (
−2µ

1−µ
) , 𝑖𝑓 0 ≤ µ ≤ 1;

4µ − 3, 𝑖𝑓µ ≥ 1.                               

  (1.2) 

The inequality (1.2) plays a very important role in determining estimates of higher coefficients for some sub classes 

𝓢([3], [9]). 

Let us define some subclasses of 𝓢. 

We denote by S*, the class of univalent starlike functions  

𝑔(𝑧) = 𝑧 +∑𝑏𝑛𝑧
𝑛

∞

𝑛=2

∈ 𝓐 and satisfying the condition  

𝑅𝑒 (
𝑧𝑔(𝑧)

𝑔(𝑧)
) > 0, 𝑧 ∈ 𝔼.                                   (1.3) 

We denote by 𝒦, the class of univalent convex functions and satisfying the condition  

ℎ(𝑧) =  𝑧 +∑𝑐𝑛𝑧
𝑛

∞

𝑛=2

, 𝑧 ∈ 𝓐 

𝑅𝑒
((𝑧ℎ′(𝑧))

ℎ′(𝑧)
> 0, 𝑧 ∈ 𝔼.                                   (1.4) 

 A function 𝑓(𝑧) ∈ 𝓐 is said to be close to convex if there exists 𝑔(𝑧) ∈ 𝑆∗ such that  

𝑅𝑒 (
𝑧𝑓′(𝑧)

𝑔(𝑧)
) > 0, 𝑧 ∈ 𝔼.                                   (1.5) 

The class of close to convex functions is denoted by C and was introduced by Kaplan [7] and it was shown by him that 

all close to convex functions are univalent. 

𝑆∗(𝐴, 𝐵) = {𝑓(𝑧) ∈ 𝓐;
𝑧𝑓′(𝑧)

𝑓(𝑧)
≺  

1+𝐴𝑧

1+𝐵𝑧
, −1 ≤ 𝐵 < 𝐴 ≤ 1, 𝑧 ∈ 𝔼}                                            (1.6) 

𝒦(𝐴, 𝐵) = {𝑓(𝑧) ∈ 𝓐;
(𝑧𝑓′(𝑧))′

𝑓′(𝑧)
≺  

1+𝐴𝑧

1+𝐵𝑧
, −1 ≤ 𝐵 < 𝐴 ≤ 1, 𝑧 ∈ 𝔼}                                        (1.7) 

It is obvious that 𝑆∗(𝐴, 𝐵) is a subclass of 𝑆∗ and 𝒦 (𝐴, 𝐵) is a subclass of 𝒦.   

Several authors studied and introduced various classes and subclasses of univalent analytic functions and established 

Fekete Szego inequality for the same. ([3]-[9], [12]-15], [22]-[62]) 
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N. Kaur [11] introduced a new subclass as and have established its coefficient inequality.  

𝑆∗(𝑓, 𝑓′, 𝛼, 𝛽) = {𝑓(𝑧) ∈ 𝓐; (1 − 𝛼) (
𝑧𝑓′(𝑧)

𝑓(𝑧)
)

𝛽

+ 𝛼 (
(𝑧𝑓′(𝑧))

′

𝑓′(𝑧)
)

1−𝛽

≺  
1 + 𝑧

1 − 𝑧
; 𝑧 ∈ 𝔼} 

We will deal with the subclass of 𝑆∗(𝑓, 𝑓′, 𝛼, 𝛽) defined as follows in the present paper: 

𝑆∗(𝑓, 𝑓′, 𝛼, 𝛽, 𝐴, 𝐵) = {𝑓(𝑧) ∈ 𝓐; (1 − 𝛼) (
𝑧𝑓′(𝑧)

𝑓(𝑧)
)
𝛽

+ 𝛼 (
(𝑧𝑓′(𝑧))

′

𝑓′(𝑧)
)

1−𝛽

≺  
1+𝐴𝑧

1+𝐵𝑧
; 𝑧 ∈ 𝔼}     (1.8) 

We will deal with the subclass 𝑆∗(𝑓, 𝑓′, 𝛼, 𝛽, 𝛿) defined as follows in our next paper: 

𝑆∗(𝑓, 𝑓′, 𝛼, 𝛽, 𝛿) = {𝑓(𝑧) ∈ 𝓐; (1 − 𝛼) (
𝑧𝑓′(𝑧)

𝑓(𝑧)
)
𝛽

+ 𝛼 (
(𝑧𝑓′(𝑧))

′

𝑓′(𝑧)
)

1−𝛽

≺  (
1+𝑧

1−𝑧
)
𝛿

; 𝑧 ∈ 𝔼}      (1.9) 

Symbol ≺ stands for subordination, which we define as follows: 

Principle of Subordination: Let 𝑓(𝑧) and 𝐹(𝑧) be two functions analytic in 𝔼. Then 𝑓(𝑧) is called subordinate to 

F(z) in 𝔼 if there exists a function 𝑤(𝑧) analytic in 𝔼 satisfying the conditions 𝑤(0) = 0 and |𝑤(𝑧)| < 1 such that 

𝑓(𝑧) = 𝐹(𝑤(𝑧));  𝑧Î 𝔼 and we write 𝑓(𝑧)  ≺  𝐹(𝑧). 

By 𝒰, we denote the class of analytic bounded functions of the form  𝑤(𝑧) =  ∑ 𝑑𝑛𝑧
𝑛∞

𝑛=1 , 𝑤(0) = 0, |𝑤(𝑧)| < 1. 

                                                                           (1.10) 

It is known that |𝑑1| ≤ 1, |𝑑2| ≤  1 − |𝑑1|
2.                                                     (1.11) 

PRELIMINARY LEMMAS:          

For 0 <  𝑐 <  1, we write 𝑤(𝑧)  = (
𝑐+𝑧

1+𝑐𝑧
) so that 

1+𝑤(𝑧)

1−𝑤(𝑧)
 =  1 + 2𝑐𝑧 + 2𝑧2 +⋯.                                                                   (2.1) 

2. MAIN RESULTS 

THEORE 2.1 

Let 𝑓(𝑧)  ∈ 𝑆∗(𝑓, 𝑓′, 𝛼, 𝛽, 𝐴, 𝐵), then The results are sharp. 

|𝑎3 − 𝜇𝑎2
2|

≤

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

(𝐴 − 𝐵)2(8𝛼 + 3𝛽 + 4𝛼2 − 12𝛼2𝛽 − 9𝛼𝛽2 − 7𝛼𝛽)

4(3𝛼 + 𝛽 − 4𝛼𝛽){(1 − 𝛼)𝛽 + 2𝛼(1 − 𝛽)}2
−

(𝐴 − 𝐵)2

{(1 − 𝛼)𝛽 + 2𝛼(1 − 𝛽)}2
𝜇,

𝑖𝑓𝜇 ≤  
(𝐴 − 𝐵)8𝛼 + 3𝛽 + 4𝛼2 − 12𝛼2𝛽 − 9𝛼𝛽2 − 7𝛼𝛽 − 4{(1 − 𝛼)𝛽 + 2𝛼(1 − 𝛽)}2

(3𝛼 + 𝛽 − 4𝛼𝛽)
;                                                          (3.1)

(𝐴 − 𝐵)

2(3𝛼 + 𝛽 − 4𝛼𝛽)

𝑖𝑓
(𝐴 − 𝐵)8𝛼 + 3𝛽 + 4𝛼2 − 12𝛼2𝛽 − 9𝛼𝛽2 − 7𝛼𝛽 − 4{(1 − 𝛼)𝛽 + 2𝛼(1 − 𝛽)}2

(3𝛼 + 𝛽 − 4𝛼𝛽)
≤ 𝜇 ≤

4{(1 − 𝛼)𝛽 + 2𝛼(1 − 𝛽)}2 − (𝐴 − 𝐵)8𝛼 + 3𝛽 + 4𝛼2 − 12𝛼2𝛽 − 9𝛼𝛽2 − 7𝛼𝛽

(3𝛼 + 𝛽 − 4𝛼𝛽)
;                                                                          (3.2)

(𝐴 − 𝐵)2

{(1 − 𝛼)𝛽 + 2𝛼(1 − 𝛽)}2
𝜇 −

(𝐴 − 𝐵)2(8𝛼 + 3𝛽 + 4𝛼2 − 12𝛼2𝛽 − 9𝛼𝛽2 − 7𝛼𝛽)

4(3𝛼 + 𝛽 − 4𝛼𝛽){(1 − 𝛼)𝛽 + 2𝛼(1 − 𝛽)}2
,

𝑖𝑓 𝜇 ≥  
4{(1 − 𝛼)𝛽 + 2𝛼(1 − 𝛽)}2 − (𝐴 − 𝐵)8𝛼 + 3𝛽 + 4𝛼2 − 12𝛼2𝛽 − 9𝛼𝛽2 − 7𝛼𝛽

(3𝛼 + 𝛽 − 4𝛼𝛽)
                                                                (3.3)

 

Proof 2.2. By definition of 𝑆∗(𝑓, 𝑓′, 𝛼, 𝛽, 𝐴, 𝐵), we have 

(1 − 𝛼) (
𝑧𝑓′(𝑧)

𝑓(𝑧)
)
𝛽

+ 𝛼 (
(𝑧𝑓′(𝑧))

′

𝑓′(𝑧)
)

1−𝛽

= 
1+𝐴𝑤(𝑧)

1+𝐵𝑤(𝑧)
; 𝑤(𝑧) ∈ 𝒰.                            (3.4) 

 Expanding the series (3.4), we get 

(1 − 𝛼) {1 + 𝛽𝑎2𝑧 + (2𝛽𝑎3 +
𝛽(𝛽−3)

2
𝑎2
2)𝑧2 + − − −} + 𝛼{1 + 2(1 − 𝛽)𝑎2𝑧 + 2(1 − 𝛽)(3𝑎3−(𝛽 + 2)𝑎2

2)𝑧2 +− −

−} = (1 + (𝐴 − 𝐵)𝑐1𝑧 + (𝐴 − 𝐵)(𝑐2 − 𝐵𝑐1
2)𝑧2 +− − −).                                     (3.5) 

Identifying terms in (3.5), we get 
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𝑎2 =
(𝐴−𝐵)

(1−𝛼)𝛽+2𝛼(1−𝛽)
𝑐1                                                                                                               (3.6) 

𝑎3 =
(𝐴−𝐵)

2(3𝛼+𝛽−4𝛼𝛽)
𝑐2 + 

(𝐴−𝐵)2(8𝛼+3𝛽+4𝛼2−12𝛼2𝛽−9𝛼𝛽2−7𝛼𝛽)

4(3𝛼+𝛽−4𝛼𝛽){(1−𝛼)𝛽+2𝛼(1−𝛽)}2
𝑐1
2.                                              (3.7) 

From (3.6) and (3.7), we obtain 

𝑎3 − 𝜇𝑎2
2 =

(𝐴−𝐵)

2(3𝛼+𝛽−4𝛼𝛽)
𝑐2 + [

(𝐴−𝐵)2(8𝛼+3𝛽+4𝛼2−12𝛼2𝛽−9𝛼𝛽2−7𝛼𝛽)

4(3𝛼+𝛽−4𝛼𝛽){(1−𝛼)𝛽+2𝛼(1−𝛽)}2
−

(𝐴−𝐵)2

{(1−𝛼)𝛽+2𝛼(1−𝛽)}2
𝜇] 𝑐1

2.               (3.8) 

Taking absolute value, (3.8) can be rewritten as  

|𝑎3 − 𝜇𝑎2
2| ≤

(𝐴−𝐵)

3𝛼+𝛽−4𝛼𝛽
|𝑐2| +

(𝐴−𝐵)2

{(1−𝛼)𝛽+2𝛼(1−𝛽)}2
|
8𝛼+3𝛽+4𝛼2−12𝛼2𝛽−9𝛼𝛽2−7𝛼𝛽

4(3𝛼+𝛽−4𝛼𝛽)
− 𝜇| |𝑐1

2|.         (3.9) 

Using (1.9) in (3.9), we get 

|𝑎3 − 𝜇𝑎2
2| ≤

(𝐴 − 𝐵)

3𝛼 + 𝛽 − 4𝛼𝛽
(1 − |𝑐1|

2)

+
(𝐴 − 𝐵)2

{(1 − 𝛼)𝛽 + 2𝛼(1 − 𝛽)}2
|
8𝛼 + 3𝛽 + 4𝛼2 − 12𝛼2𝛽 − 9𝛼𝛽2 − 7𝛼𝛽

4(3𝛼 + 𝛽 − 4𝛼𝛽)
− 𝜇| |𝑐1

2 

=
(𝐴−𝐵)

3𝛼+𝛽−4𝛼𝛽
+

(𝐴−𝐵)2

{(1−𝛼)𝛽+2𝛼(1−𝛽)}2
[|
8𝛼+3𝛽+4𝛼2−12𝛼2𝛽−9𝛼𝛽2−7𝛼𝛽

4(3𝛼+𝛽−4𝛼𝛽)
− 𝜇| −

{(1−𝛼)𝛽+2𝛼(1−𝛽)}2

(𝐴−𝐵)(3𝛼+𝛽−4𝛼𝛽)
] |𝑐1|

2. (3.10) 

Case I:  𝜇 ≤
8𝛼+3𝛽+4𝛼2−12𝛼2𝛽−9𝛼𝛽2−7𝛼𝛽

4(3𝛼+𝛽−4𝛼𝛽)
. 

(3.10) can be rewritten as 

|𝑎3 − 𝜇𝑎2
2 ≤

(𝐴−𝐵)

3𝛼+𝛽−4𝛼𝛽
+

(𝐴−𝐵)2

{(1−𝛼)𝛽+2𝛼(1−𝛽)}2
[
(𝐴−𝐵)8𝛼+3𝛽+4𝛼2−12𝛼2𝛽−9𝛼𝛽2−7𝛼𝛽−4{(1−𝛼)𝛽+2𝛼(1−𝛽)}2

(3𝛼+𝛽−4𝛼𝛽)
− 𝜇] |𝑐1|

2.  

(3.11) 

Subcase I (a): 𝜇 ≤
(𝐴−𝐵)8𝛼+3𝛽+4𝛼2−12𝛼2𝛽−9𝛼𝛽2−7𝛼𝛽−4{(1−𝛼)𝛽+2𝛼(1−𝛽)}2

(3𝛼+𝛽−4𝛼𝛽)
. 

Using (1.9), (3.11) becomes 

|𝑎3 − 𝜇𝑎2
2| ≤

(𝐴−𝐵)2(8𝛼+3𝛽+4𝛼2−12𝛼2𝛽−9𝛼𝛽2−7𝛼𝛽)

4(3𝛼+𝛽−4𝛼𝛽){(1−𝛼)𝛽+2𝛼(1−𝛽)}2
−

(𝐴−𝐵)2

{(1−𝛼)𝛽+2𝛼(1−𝛽)}2
𝜇                  (3.12) 

Subcase I (b): 𝜇 ≥
(𝐴−𝐵)8𝛼+3𝛽+4𝛼2−12𝛼2𝛽−9𝛼𝛽2−7𝛼𝛽−4{(1−𝛼)𝛽+2𝛼(1−𝛽)}2

(3𝛼+𝛽−4𝛼𝛽)
.  

We obtain from (3.11) 

|𝑎3 − 𝜇𝑎2
2 ≤

(𝐴−𝐵)

3𝛼+𝛽−4𝛼𝛽
.                                                                                                            (3.13) 

Case II: 𝜇 ≥
8𝛼+3𝛽+4𝛼2−12𝛼2𝛽−9𝛼𝛽2−7𝛼𝛽

4(3𝛼+𝛽−4𝛼𝛽)
 

Preceding as in case I, we get  

|𝑎3 − 𝜇𝑎2
2 ≤

1

3𝛼+𝛽−4𝛼𝛽
+

1

{(1−𝛼)𝛽+2𝛼(1−𝛽)}2
[𝜇 −

4{(1−𝛼)𝛽+2𝛼(1−𝛽)}2−(𝐴−𝐵)8𝛼+3𝛽+4𝛼2−12𝛼2𝛽−9𝛼𝛽2−7𝛼𝛽

(3𝛼+𝛽−4𝛼𝛽)
] |𝑐1|

2.   (3.14) 

Subcase II (a): 𝜇 ≤
4{(1−𝛼)𝛽+2𝛼(1−𝛽)}2−(𝐴−𝐵)8𝛼+3𝛽+4𝛼2−12𝛼2𝛽−9𝛼𝛽2−7𝛼𝛽

(3𝛼+𝛽−4𝛼𝛽)
 

(3.14) takes the form     

|𝑎3 − 𝜇𝑎2
2 ≤

(𝐴−𝐵)

3𝛼+𝛽−4𝛼𝛽
                                                                                        (3.15) 

Combining subcase I (b) and subcase II (a), we obtain 

|𝑎3 − 𝜇𝑎2
2| ≤

(𝐴−𝐵)

3𝛼+𝛽−4𝛼𝛽
𝑖𝑓

(𝐴−𝐵)8𝛼+3𝛽+4𝛼2−12𝛼2𝛽−9𝛼𝛽2−7𝛼𝛽−4{(1−𝛼)𝛽+2𝛼(1−𝛽)}2

(3𝛼+𝛽−4𝛼𝛽)
≤ 𝜇 ≤

4{(1−𝛼)𝛽+2𝛼(1−𝛽)}2−(𝐴−𝐵)8𝛼+3𝛽+4𝛼2−12𝛼2𝛽−9𝛼𝛽2−7𝛼𝛽

(3𝛼+𝛽−4𝛼𝛽)
                                                              (3.16) 

Subcase II (b): 𝜇 ≥
4{(1−𝛼)𝛽+2𝛼(1−𝛽)}2−(𝐴−𝐵)8𝛼+3𝛽+4𝛼2−12𝛼2𝛽−9𝛼𝛽2−7𝛼𝛽

(3𝛼+𝛽−4𝛼𝛽)
 

Preceding as in subcase I (a), we get 

|𝑎3 − 𝜇𝑎2
2| ≤

(𝐴−𝐵)2

{(1−𝛼)𝛽+2𝛼(1−𝛽)}2
𝜇 −

(𝐴−𝐵)2(8𝛼+3𝛽+4𝛼2−12𝛼2𝛽−9𝛼𝛽2−7𝛼𝛽)

4(3𝛼+𝛽−4𝛼𝛽){(1−𝛼)𝛽+2𝛼(1−𝛽)}2
                (3.17) 

Combining (3.12), (3.16) and (3.17), the theorem is proved. 
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Corollary 2.3:  Putting 𝛼 = 1, 𝛽 = 0, 𝐴 = 1, 𝐵 = −1 in the theorem, we get  

|𝑎3 − 𝜇𝑎2
2| ≤

{
 
 

 
 
1 − 𝜇, 𝑖𝑓𝜇 ≤  1; 
1

3
𝑖𝑓1 ≤ 𝜇 ≤

4

3
;

𝜇 − 1, 𝑖𝑓 𝜇 ≥  
4

3

 

These estimates were derived by Keogh and Merkes [8] and are results for the class of univalent convex functions. 

Corollary 2.3:  Putting 𝛼 = 0, 𝛽 = 1, 𝐴 = 1 , 𝐵 = −1 in the theorem, we get  

|𝑎3 − 𝜇𝑎2
2| ≤

{
 
 

 
 3 − 4𝜇, 𝑖𝑓𝜇 ≤  

1

2
;

1𝑖𝑓
1

2
≤ 𝜇 ≤ 1;

4𝜇 − 3, 𝑖𝑓 𝜇 ≥  1

 

These estimates were derived by Keogh and Merkes [8] and are results for the class of univalent starlike functions. 

Corollary 2.4:  Putting 𝐴 = 1 , 𝐵 = −1 in the theorem, we get  

|𝑎3 − 𝜇𝑎2
2|

≤

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

1

{(1 − 𝛼)𝛽 + 2𝛼(1 − 𝛽)}2
[
8𝛼 + 3𝛽 + 4𝛼2 − 12𝛼2𝛽 − 9𝛼𝛽2 − 7𝛼𝛽

(3𝛼 + 𝛽 − 4𝛼𝛽)
− 4𝜇] ,

𝑖𝑓𝜇 ≤  
8𝛼 + 3𝛽 + 4𝛼2 − 𝛽2 − 3𝛼𝛽2 − 7𝛼𝛽

4(3𝛼 + 𝛽 − 4𝛼𝛽)
;                                                                                                                      

1

3𝛼 + 𝛽 − 4𝛼𝛽

𝑖𝑓
8𝛼 + 3𝛽 + 4𝛼2 − 𝛽2 − 3𝛼𝛽2 − 7𝛼𝛽

4(3𝛼 + 𝛽 − 4𝛼𝛽)
≤ 𝜇 ≤

8𝛼 + 3𝛽 + 8𝛼2 + 𝛽2 − 24𝛼2𝛽 − 6𝛼𝛽2 − 7𝛼𝛽

4(3𝛼 + 𝛽 − 4𝛼𝛽)
;                                                                                                                    

1

{(1 − 𝛼)𝛽 + 2𝛼(1 − 𝛽)}2
[4𝜇 −

8𝛼 + 3𝛽 + 4𝛼2 − 12𝛼2𝛽 − 9𝛼𝛽2 − 7𝛼𝛽

(3𝛼 + 𝛽 − 4𝛼𝛽)
] ,

𝑖𝑓 𝜇 ≥  
8𝛼 + 3𝛽 + 8𝛼2 + 𝛽2 − 24𝛼2𝛽 − 6𝛼𝛽2 − 7𝛼𝛽

4(3𝛼 + 𝛽 − 4𝛼𝛽)
                                                                                                          

 

These estimates were derived by N. Kaur [11] and are results for the subclass 𝑆∗(𝑓, 𝑓′, 𝛼, 𝛽) of univalent starlike 

functions. 
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