INTERNATIONAL JOURNAL OF PROGRESSIVE e-ISSN :
IIPREMS RESEARCH IN ENGINEERING MANAGEMENT 2583-1062
\I@

AND SCIENCE (IJPREMS) Impact
Www_ijpremslcom (Int Peer Reviewed JOUrnaI) Factor :
editor@ijprems.com Vol. 05, Issue 10, October 2025, pp : 118-121 7.001

COMPARATIVE STUDY OF GENERATIVE Al TOOLS FOR CODE
COMPLETION AND BUG DETECTION - A REVIEW
Dr. P. Bastin Thiyagaraj*, Shiny Jenifer SI?, Ruban B*, Lagneshwaran S*
!Assistant Professor, Department Of IT, St. Joseph’s College, Trichy, India.
234pG Student, Department Of IT, St. Joseph’s College, Trichy, India.
DOI: https://www.doi.org/10.58257/1IJPREMS44081

ABSTRACT

By improving problem detection and automating code creation, generative Al techniques have drastically changed
software development. Large language model (LLM)-powered tools now help developers finish tasks, anticipate code
topologies, and find errors instantly, saving manual labor and enhancing code quality. The performance of five
popular Al-powered coding assistants—GitHub Copilot Enterprise, Amazon CodeWhisperer Pro, Codeium Pro,
Cursor Al, and Tabnine Enterprise—in terms of code completion and error detection is compared in this study.
Contextual accuracy, IDE integration, language support, and security capabilities are the four main criteria we use to
evaluate each tool, drawing on feature-based research and contemporary literature. The results show that although all
tools help developers be more productive, their relative efficacy differs based on task difficulty, programming
language. The results show that while all tools help developers be more productive, the relative efficacy of each tool
differs based on the development environment, task complexity, and programming language. Notably, while some
solutions provide better contextual comprehension or syntax-level recommendations, others excel at business
customisation and vulnerability detection. Based on operational requirements, security priorities, and project scope,
this study attempts to aid developers, instructors, and organizations in choosing the best Al assistant.

Keywords: Al Coding Assistants, Comparative Analysis, Large Language Models (LLMs), Software Development,
Code Completion, Generative Al.
1. INTRODUCTION

The way programmers write, debug, and maintain code has changed as a result of the incorporation of generative Al

into software development. Large language model (LLM)-powered tools now help developers by finishing functions,
anticipating code topologies, and instantly detecting errors. This change has improved code quality in a variety of
programming environments, decreased manual labor, and increased productivity. GitHub Copilot Enterprise, Amazon
CodeWhisperer Pro, Codeium Pro, Cursor Al, and Tabnine Enterprise are some of the most well-known tools in this
field; each provides unique features catered to various development requirements. These tools are especially useful in
educational and open-source environments due to its lightweight integration and contextual accuracy.[3].

Cursor Al and Copilot performed best in context-rich environments, while Tabnine excelled in syntax-level
suggestions.[8] Others place a higher priority on security, privacy, or enterprise customisation, while others are
excellent at contextual understanding and IDE integration. These tools help students understand Al-generated code and
improve learning outcomes.[9] Five top generative Al tools are thoroughly compared in this research, with their
advantages and disadvantages assessed along several important aspects, including accuracy, integration, language
support, and vulnerability detection. The objective is to assist developers and organizations in choosing the best tool
for their needs based on operational context, security requirements, and project complexity.

2. LITERATURE REVIEW

A thorough assessment of GitHub Copilot's effects on software development workflows was carried out by
Kalliamvakou et al. (2024)[1], who emphasized the platform's advantages in speeding up tedious coding chores and
enhancing developer productivity. Additionally, the study identified possible hazards associated with unsafe code
development and an excessive dependence on Al recommendations, particularly in business settings.

When evaluating Amazon CodeWhisperer's bug detection capabilities, Alon. U. et al. (2023) [2] highlighted how well
it performed in locating security flaws and logical mistakes in cloud-native applications. According to their research,
CodeWhisperer is a strong substitute for Copilot, especially for development pipelines that are linked with AWS.
Codeium's role in improving the developer experience through privacy-first architecture and quick, context-aware
code recommendations was examined by Sharma, R., & Patel, M. (2025) [3]. According to their research, Codeium
works well for debugging and refactoring tasks, particularly in open-source and educational contexts.

In their evaluation of GitHub Copilot's code generation quality, B. Yetistiren, I. Ozsoy, and E. Tuzun (2022) [4]
noted the program's advantages in generating syntactically accurate code but also its shortcomings in terms of

@International Journal Of Progressive Research In Engineering Management And Science 118

INTERNATIONAL JOURNAL OF PROGRESSIVE e-ISSN :
IIPREMS RESEARCH IN ENGINEERING MANAGEMENT 2583-1062
\I@

AND SCIENCE (IJPREMS) Impact
Www.ijprems.com (Int Peer Reviewed Journal) Factor :
editor@ijprems.com Vol. 05, Issue 10, October 2025, pp : 118-121 7.001

contextual accuracy and dependability. Their study gives empirical insights into Copilot’s practical utility and areas
needing development.

A growing trend of integrating Al into software engineering environments to increase productivity and contextual
relevance is reflected in the partnership between Tabnine to introduce generative Al tools to improve developer
workflows. R. Rajkumar (2024) [5] describes how Tabnine’s Al assistant integrates with Atlassian platforms like Jira
and Bitbucket to automate code generation and streamline project management.

The effectiveness of these tools varies greatly depending on programming language, task complexity,developer
expertise, according to Singh, A., Mehta, R., & Banerjee, S. (2025) [6], who conducted a comparative study
evaluating Al code assistants—Copilot, CodeWhisperer, and Tabnine—across key metrics like code correctness,
maintainability, and IDE integration. Their findings provide useful insights for choosing the best assistant in a variety
of development contexts.

An informal yet perceptive summary of Amazon CodeWhisperer is given by Mani (2023) [7], who highlights how the
platform may boost developer productivity by offering Al-powered code recommendations. To establish
CodeWhisperer as a competitive alternative to other coding assistants, the article highlights how it integrates with
AWS tools and produces context-aware code. Mani's viewpoint emphasizes how generative Al is becoming more and
more important in optimizing software development processes.

Nakamura, H., and Lee, J. (2023).[8] conducted performance benchmarking of Al coding assistants spanning
Python, JavaScript, and Java. According to their findings, Tabnine was superior at making syntax-level
recommendations, whereas Cursor Al and Copilot fared best in context-rich settings.

Miller, T., et al. (2025).[9] investigated the use of generative Al tools in educational contexts, emphasizing the value
of explainability and feedback loops in Al-generated code and focusing on Codeium and Replit Ghostwriter as useful
platforms for teaching programming.

3. GENERATIVE AI TOOLS FOR CODE COMPLETION AND BUG DETECTION
GitHub Copilot Enterprise

Built on top of OpenAl Codex, GitHub Copilot Enterprise is intended for close connection with Visual Studio Code
and GitHub projects. GitHub Copilot saves time on repeated activities and simplifies basic unit testing. It does this by
writing boilerplate code quickly. This application uses coding principles to produce useful concepts. But when it
comes to intricate business logic or unique situations, it falls short. This could lead to incorrect or improper code
generation. To make sure the person is functioning appropriately within their surroundings, surveillance is essential.

Comparison of Manual vs. Al-driven Bug Fixing Efficiency

20.0} . e 3 Fiming
E Alariven Bug Fuong

Time Taken to Fix (Hours)

Syntax Errors Logic Errors Security Vuinerabilities Performance Issues
Bug Categories

This is particularly true for occupations that are difficult or need specialized knowledge. Nevertheless, it has a number
of shortcomings, including the fact that it primarily generates accurate code 51.2% of the time and only produces
suitable code 28.7% of the time [4]. The comparison of manual vs Al — driven bug fixing efficiency [10].

Amazon CodeWhisperer Pro

Several programming languages are supported by the extremely talented Amazon CodeWhisperer, which can offer
code recommendations. Additionally, it interfaces with IDEs like IntelliJ with ease. Amazon CodeWhisperer offers

@ International Journal Of Progressive Research In Engineering Management And Science 119

INTERNATIONAL JOURNAL OF PROGRESSIVE e-ISSN :
IIPREMS RESEARCH IN ENGINEERING MANAGEMENT 2583-1062
\I@

AND SCIENCE (IJPREMS) Impact
Www.ijprems.com (Int Peer Reviewed Journal) Factor :
editor@ijprems.com Vol. 05, Issue 10, October 2025, pp : 118-121 7.001

thorough security testing and smooth IDE integration. It takes less time to switch between tasks, which increases
productivity. It also checks for security vulnerabilities [7]. It can need creating bespoke files and making manual
importation modifications. By generating environment-specific code blocks and providing real-time code
recommendations, Amazon CodeWhisperer increases developer productivity. One of its benefits is enhanced Amazon
Web Services code. Additional capabilities include integration with other IDEs, code enhancement, and compatibility
with a wide range of programming languages. In addition, it provides open-source code reference tracking, security
assessments, and remedy recommendations. Its shortcomings include forcing engineers to thoroughly review and
confirm concepts and producing incorrect code recommendations. The premium Professional version unlocks more
features and customization choices, while the free tier offers some benefits.

Codeium Pro

Codeium Pro is a portable, privacy-preserving Al assistant that facilitates local model setup and offline use. It is
especially useful for refactoring and debugging operations and offers quick, context-aware code completions. Because
of its architecture, which prioritizes developer control and minimal data sharing, Codeium is appropriate for
educational institutions and open source contributors. Its speed and ease of use make it a useful tool for iterative
development and quick prototyping, despite its moderate problem detection capabilities.

Cursor Al

Cursor Al can traverse and produce code across several files by utilizing GPT-4 Turbo and introducing full-project
context awareness. This makes it particularly helpful for projects involving a lot of APIs and full-stack development.
Large codebases are less fragmented thanks to Cursor's alignment method, which guarantees semantic consistency.
Cursor is excellent at preserving architectural coherence and facilitating intricate processes, while having less reliable
bug identification than CodeWhisperer.

Tabnine Enterprise

Tabnine Enterprise specializes in providing large teams with safe, adaptable Al coding support. By enabling
companies to train models on private codebases, customized recommendations that adhere to internal standards are
guaranteed. Numerous languages and IDEs are supported by Tabnine, and its telemetry controls provide fine-grained
control over Al interactions. Its bug detection and code completion are reliable, but they are not as sophisticated as
those of Copilot or CodeWhisperer. Tabnine is adept at reducing typing to speed up coding, utilizing an adaptive
learning process to enhance options based on user preferences, and being compatible with a wide range of integrated
development environments (IDEs). But compared to the premium edition, the free version offers fewer features [5].
Inaccurate guidance can upset people and disrupt the programming cycle. Scalability and enterprise-grade security are
its main advantages.

4. IMPLEMENTATION STRATEGY

Five top generative Al tools—GitHub Copilot Enterprise, Amazon CodeWhisperer Pro, Codeium Pro, Cursor Al, and
Tabnine Enterprise—are assessed in this study using a qualitative comparison methodology. There are two main stages
to the methodology:

Tool Selection Criteria

Tools were selected based on:

e Adoption and popularity in settings for professional development.

e The Accessibility of technical documentation and published research.
e Assistance with bug identification and code completion features.

Evaluation Parameters

Evaluation Dimension Description

Finishing the Code Accuracy Ability to generate syntactically and semantically correct code

Ability to identify logical errors, syntax issues, and security

Bug Detection Capability vulnerabilities

Compatibility and responsiveness within popular development

IDE Integration .
environments

Built-in mechanisms for detecting unsafe code and enforcing secure

Security Best Practices .
coding

Language Support Range and diversity of supported programming languages

@ International Journal Of Progressive Research In Engineering Management And Science 120

INTERNATIONAL JOURNAL OF PROGRESSIVE e-ISSN :
IIPREMS RESEARCH IN ENGINEERING MANAGEMENT 2583-1062
\I\Q

AND SCIENCE (IJPREMS) Impact
www.ijprems.com (Int Peer Reviewed Journal) Factor :
editor@ijprems.com Vol. 05, Issue 10, October 2025, pp : 118-121 7.001

5. CONCLUSION

By improving issue identification and automating code completion, generative Al techniques are transforming
software development. GitHub Copilot, Amazon CodeWhisperer, Codeium, Cursor Al, and Tabnine were the five top
tools compared in this study based on important performance indicators. Every tool showed distinct advantages,
ranging from CodeWhisperer's security screening to Copilot's contextual precision. While Codeium and Tabnine
provided enterprise level customization and anonymity, Cursor was the best at multi-file coherence. The fact that no
single tool dominated every category highlights the necessity of context-driven choosing. Developers should choose
tools based on integration preferences, security requirements, and project complexity. Al's future role in coding will be
shaped by hybrid methodologies and ethical protections as it develops.

6. REFERENCES

[1] Kalliamvakou, E., et al. (2024). GitHub Copilot: A Systematic Study. CEUR Workshop Proceedings Vol. 3762.

[2] Alon, U., et al. (2023). Protecting the Whisper: A Security Assessment of Amazon CodeWhisperer’s
Vulnerability Detection. In Lecture Notes in Computer Science. Springer.
https://link.springer.com/chapter/10.1007/978-3-031-85856-7 36

[3] Sharma, R., & Patel, M. (2025). Al for Software Engineering — Enhancing Developer Experience with
Codeium and Copilot. International Journal of Scientific Research, Vol. 14, Issue 2.
https://www.ijsr.net/getabstract.php?paperid=SR25207090345

[4] B. Yetistiren, I. Ozsoy, and E. Tuzun, “Assessing the quality of GitHub copilot’s code generation,” Proceedings
of the 18th International Conference on Predictive Models and Data Analytics in Software Engineering, pp. 62—
71,2022, doi: https://doi.org/10.1145/3558489.3559072.

[5] R. Rajkumar, “Tabnine and Atlassian reveal new generative Al tools for developers,” ZDNET, 2024.
https://www.zdnet.com/article/tabnine-and-atlassian-reveal-new-generative-ai-tools-for-developers/ (accessed
20)

[6] Singh, A., Mehta, R., & Banerjee, S. (2025) Comparative Evaluation of Al Code Assistants: Copilot,
CodeWhisperer, and Tabnine. Axis Intelligence. Retrieved from https://axis-intelligence.com/ai-code-assistants-
ultimate-comparison-2025/

[71 Mani, “Amazon CodeWhisperer —stepping on the accelerator ;-),” Medium, 2023.
https://cmani.medium.com/amazon-codewhisperer-stepping-on-the-accelerator-1d0883ed649e (accessed 2024).

[8] Lee, J.,, & Nakamura, H. (2023). Al Coding Benchmark: Evaluating Performance of Leading AI Code
Assistants Across Languages. Al Multiple Research. Retrieved from https://research.aimultiple.com/ai-coding-
benchmark/

[91 Miller, T, et al. (2025) Generative Al in Education: Teaching Programming with Codeium and Ghostwriter.
Journal of Educational Technology and Innovation, Vol. 18(1), pp. 22-34.

[10] Sandeep Shenoy., & Idoko Peter Idoko.,(2024) World Journal of Advanced Engineering Technology and
Sciences

@ International Journal Of Progressive Research In Engineering Management And Science 121

