

CYBER ATTACK DETECTION USING IOT

B. Vijay Kumar¹, Ch.Vamshi², G. Venu Kumar³, J. Srikanth⁴, SK. Ameer Azad⁵

¹Assistant Professor, Department Of CSE (Cyber Security), Sri Indu Institute Of Engineering And Technology, Hyderabad, Telangana, India.

^{2,3,4,5}Student, Department Of CSE (Cyber Security), Sri Indu Institute Of Engineering And Technology, Hyderabad, Telangana, India.

DOI: <https://www.doi.org/10.58257/IJPREMS43939>

ABSTRACT

The rapid expansion of Internet of Things (IoT) infrastructure has created an interconnected ecosystem of billions of intelligent devices, facilitating automated operations across healthcare, manufacturing, agriculture, transportation, and urban planning sectors. Despite the substantial benefits IoT provides, the extensive attack vectors, limited computational capabilities, and diverse nature of IoT systems create significant security challenges that make these devices attractive targets for cybercriminals. Threat actors leverage these weaknesses to execute various attacks including Distributed Denial of Service (DDoS) operations, information theft, malicious code insertion, identity spoofing, and unauthorized system access, potentially causing critical failures in mission-critical applications.

This research addresses these security concerns by developing and deploying an advanced cyber-threat detection framework specifically optimized for IoT ecosystems. The methodology encompasses gathering network and device telemetry from IoT endpoints and examining this data through machine learning algorithms to detect irregular patterns that suggest potential security threats. The system framework incorporates components for data cleaning, feature identification, algorithm training, and continuous threat monitoring.

Various supervised learning methodologies including Random Forest, Support Vector Machine (SVM), and Decision Trees, along with unsupervised techniques like K-Means Clustering and Autoencoders, are assessed for their capability in differentiating between legitimate and hostile activities. System validation employs industry-standard datasets including UNSW-NB15, CICIDS2017, and Bot-IoT, with performance evaluation using metrics such as accuracy, precision, recall, F1-score, and false positive rates. Experimental findings show that the developed framework can identify diverse attack patterns with superior accuracy and minimal resource consumption, making it appropriate for implementation in resource-limited IoT deployments.

Given the increasing frequency of sophisticated attacks, there is an urgent requirement for intelligent, responsive, and analytics-driven solutions capable of categorizing and forecasting DDoS attacks in real-time. Machine learning, as a branch of artificial intelligence, has proven to be an effective methodology for addressing this challenge. This research introduces an innovative machine learning-based classification and prediction framework for DDoS attack detection.

Keywords: IoT, Internet protocols, Cyber Attack, Network.

1. INTRODUCTION

1.1 Overview

The Internet of Things (IoT) revolution is reshaping contemporary digital landscapes by establishing connections among billions of intelligent devices spanning residential, industrial, municipal, and medical environments. These interconnected systems exchange information through internet protocols, enhancing automation capabilities and data-informed decision-making processes beyond previous limitations. Nevertheless, the enormous scale and diverse nature of IoT networks create substantial security vulnerabilities.

The fundamental characteristics of these devices—typically featuring restricted processing capabilities and basic security implementations—render conventional cybersecurity solutions insufficient. Therefore, identifying and preventing cyber-attacks within IoT environments has become essential. This project's main objective focuses on creating an intelligent and effective cyber-attack detection mechanism specifically engineered for IoT-based network infrastructures. This goal is accomplished through network traffic analysis and machine learning methodologies to recognize and identify suspicious or malicious behaviors in real-time.

1.2 Background and Motivation

As IoT technology increasingly integrates into all aspects of daily life—ranging from intelligent appliances to networked medical equipment—the potential attack surface for malicious entities grows dramatically. Cyber-attacks targeting IoT devices may cause system failures, data compromises, and potentially dangerous scenarios in contexts

like smart healthcare or autonomous transportation systems. Prevalent attack types including Denial of Service (DoS), identity theft, surveillance, and ransomware are progressively focusing on these susceptible endpoints.

Conventional security frameworks are typically engineered for powerful servers and desktop computers and cannot be directly implemented in IoT environments due to computational limitations. Consequently, there exists a requirement for efficient, adaptive, and intelligent systems capable of monitoring network traffic, learning from past data, and detecting attacks with minimal false alerts.

This project addresses the critical need to develop such a detection system that functions effectively in constrained environments while continuously adapting to identify emerging attack patterns. The proliferation of IoT devices has revolutionized modern digital infrastructure by connecting billions of devices—from smart household items to industrial automation systems. These devices maintain constant communication and data exchange, facilitating automation, efficiency, and convenience across multiple sectors including healthcare, transportation, agriculture, and smart cities.

With the increasing number of cyber-attacks targeting IoT infrastructure, there is an urgent need to create intelligent, adaptive, and lightweight detection systems that can operate efficiently within resource-constrained environments. Primary motivations for this research include:

- 1. Expanding Threat Environment:** The frequency and complexity of cyber-attacks on IoT networks are rising rapidly. Recent botnet incidents like Mirai have demonstrated the devastating impact of compromised IoT devices.
- 2. Inadequacy of Traditional Security:** Current network security solutions frequently fail to identify novel or subtle attacks within IoT networks due to restricted visibility or inflexible rule systems.
- 3. Requirement for Immediate Detection:** Attacks must be identified quickly to minimize damage or data loss. Machine learning models can analyze traffic patterns in real-time and identify anomalies or recognized attack patterns.
- 4. Scalability and Automation:** With thousands of devices producing continuous data flows, manual monitoring becomes impractical. An automated detection system is essential for scalable and effective security.
- 5. Research and Innovation Potential:** Implementing machine learning for network intrusion detection in IoT represents an active research domain. This project contributes to developing a scalable and adaptable framework.

2. LITERATURE SURVEY

2.1 Introduction

The widespread adoption of Internet of Things (IoT) devices has revolutionized connectivity by creating intelligent environments in homes, healthcare facilities, and industrial settings. However, this expansion has enlarged the attack surface for cyber threats. Cybercriminals exploit weaknesses in IoT devices and networks, resulting in attacks such as Distributed Denial of Service (DDoS), botnets, and data breaches.

The identification of cyber-attacks in IoT environments has emerged as a significant research focus due to increasing security concerns related to rapid IoT device deployment. Multiple studies have explored the application of machine learning (ML) and deep learning (DL) techniques to create effective intrusion detection systems (IDS) for IoT networks. The following presents a summary of significant contributions in this field:

1. Moustafa et al. (2015) – UNSW-NB15 Dataset

- Contribution:** The researchers developed the UNSW-NB15 dataset, containing contemporary synthetic attack behaviors that replicate real-world scenarios.
- Method:** Multiple ML models including Random Forest, Naive Bayes, and SVM were tested.
- Result:** Random Forest demonstrated high performance but needed optimization to prevent overfitting.
- Relevance:** This dataset has established itself as a standard for intrusion detection research, including IoT-focused investigations.

2. Meidan et al. (2018) – IoT Sentinel

- Contribution:** Introduced a real-time device identification and anomaly detection system called IoT Sentinel.
- Method:** Employed supervised learning (RF, k-NN) to create IoT device profiles and identify deviations.

3. SYSTEM ANALYSIS

A. SYSTEM ANALYSIS

System design represents the phase where requirement specifications and analysis results are converted into an implementation blueprint. For the cyber-attack detection system, the design emphasizes creating a modular, scalable, and efficient architecture capable of performing real-time monitoring, feature extraction, classification, and alerting within IoT environment constraints.

FIG 8: System Design (Original image caption - add image here)

System Workflow:

1. **Input:** IoT-generated or simulated network traffic
2. **Preprocess:** Clean, encode, and normalize the data
3. **Model Training:** Train using known attack/normal samples
4. **Testing:** Evaluate with unseen data
5. **Detection:** Predict the status of live traffic (normal/attack)
6. **Output:** Display results and raise alerts if needed

Future Design Enhancements:

- Edge Deployment on Raspberry Pi or ESP32 using TensorFlow Lite
- Cloud-based Integration for scalable threat monitoring
- Dashboard Visualization using Grafana or Streamlit
- Auto-Update Models using online learning techniques

Architecture Layers:

1. Perception Layer (IoT Devices)

- a. Incorporates smart sensors, actuators, or simulated devices that produce data
- b. Devices communicate using lightweight protocols (e.g., MQTT, CoAP)

2. Network Layer

- a. Facilitates data transmission between IoT devices and processing units
- b. Utilizes wireless protocols like Wi-Fi, ZigBee, or LoRaWAN
- c. Includes an MQTT broker or network simulator to capture traffic

3. Application Layer (Detection & Monitoring)

- a. Responsible for analyzing data, detecting threats, and generating alerts
- b. Consists of modules including:
 1. Preprocessing Unit – cleans and formats incoming data
 2. Detection Engine – processes and analyzes traffic patterns

The system prevents attacks from escalating to critical stages where they could disrupt essential services.

Additionally, incorporating entropy as a detection parameter provides an extra layer of intelligence. Entropy assists in measuring randomness or disorder in network traffic, which frequently changes significantly during DDoS attacks. Sudden decreases or increases in entropy values can serve as early warning indicators of ongoing attacks. By integrating entropy analysis with machine learning models, the proposed system delivers a robust, scalable, and intelligent solution capable of functioning in modern, high-speed networks. This methodology addresses existing system limitations by providing adaptability, enhanced accuracy, and reduced false alarms in attack detection.

4. SYSTEM ARCHITECTURE

System Architecture

The proposed framework employs a modular layered architecture, facilitating straightforward deployment, scalability, and maintainability.

Architecture Layers:

1. Data Collection Layer

- a. Responsible for capturing network traffic from IoT devices
- b. Packet monitoring tools or network taps observe traffic continuously

2. Preprocessing Layer

- a. Raw data undergoes cleaning, normalization, and conversion to structured format
- b. Feature extraction generates relevant indicators for attack detection

3. Detection Layer

- a. Machine Learning models categorize traffic as normal or malicious
- b. Models are optimized for resource efficiency

4. Alerting and Logging Layer

- a. Produces alerts when attacks are detected
- b. Records events for further analysis and audit

5. User Interface Layer (Optional)

- a. Dashboard or CLI for system monitoring, alert viewing, and control

Module Descriptions:

Data Collection Module

- Captures network packets using libraries like Libpcap or tools like Wireshark
- Continuously monitors traffic from IoT devices or gateways
- Ensures minimal packet loss and real-time data availability

Preprocessing Module

- Cleanses captured data by removing irrelevant or corrupt packets
- Normalizes data for consistent scaling
- Extracts features such as:
 - Packet length
 - Protocol type
 - Source/Destination IP addresses
 - Time intervals between packets
 - Payload entropy
- Performs feature selection to reduce dimensionality and improve detection speed

Detection Module

- Implements machine learning classifiers (e.g., Decision Tree, Logistic Regression)
- Loads pre-trained models to classify incoming traffic
- Supports updating models with new training data
- Balances accuracy with computational resource usage

Alerting and Logging Module

- Generates alerts for detected cyber-attacks
- Stores comprehensive logs including timestamps, source/destination information, and attack type
- Allows exporting logs for offline analysis

User Interface Module

- Provides visual representation of alerts and network status
- Enables administrators to configure settings or update detection models
- Optionally includes notification integration (email, SMS)

This System Architecture presents the systematic methodology employed for detecting DDoS attacks in Software Defined Networks (SDN) using machine learning techniques:

1. **Start & Network Deployment:** The process initiates with network environment deployment where SDN components are established.
2. **Compute Cumulative Intrusion:** Intrusion data is gathered and analyzed cumulatively from the deployed network, helping identify abnormal behavior patterns.
3. **Case Analysis (Case-1 & Case-2):** Two distinct scenarios are examined to study traffic variations or behavior under different conditions.
4. **Apply Machine Learning:** Machine learning algorithms are implemented for both cases to classify and learn patterns from data. This step enables the system to distinguish normal versus suspicious behavior.
5. **Group Formation & Similarity Measure:** Machine learning model output is categorized into groups (Group-1 to Group-m). For each group, similarity measures are calculated (Similarity Measure-1 to Similarity Measure-m).
6. **Similarity Measure Evaluation:** A similarity assessment compares current network behavior with previously learned patterns.
7. **Decision Point – Minimal Similarity?:** If similarity is minimal (current behavior significantly differs from learned normal behavior), it indicates a possible DDoS attack. Otherwise, the SDN node is considered secure.
8. **DDoS Attack Confirmation:** Upon detecting minimal similarity, the system confirms a DDoS attack on the SDN node.
9. **Action – Stop or Continue:** If an attack is confirmed, appropriate mitigation actions are implemented, and the process stops. If the SDN node is secure, the system continues monitoring.

5. SYSTEM ANALYSIS

INPUT DESIGN

Input design establishes the connection between the information system and users. It involves developing specifications and procedures for data preparation and necessary steps to convert transaction data into a processable format. This can be accomplished by instructing the computer to read data from written or printed documents or by having personnel directly input data into the system.

Input design emphasizes controlling required input volume, minimizing errors, preventing delays, eliminating unnecessary steps, and maintaining process simplicity. The input is designed to ensure security and usability while preserving privacy.

Input Design addresses the following considerations:

- What information should be provided as input?
- How should data be organized or encoded?
- Dialog systems to guide operating personnel in providing input
- Methods for preparing input validations and error handling procedures

OUTPUT DESIGN

Quality output meets end-user requirements and presents information clearly. In any system, processing results are communicated to users and other systems through outputs. Output design determines how information is displayed for immediate needs and hard copy output requirements. It serves as the most important and direct information source for users. Effective and intelligent output design enhances the system's relationship to support user decision-making.

Computer output design should follow an organized, well-planned approach; appropriate output must be developed while ensuring each output element is designed for easy and effective system use. When designing computer output, analysts should:

1. Identify specific output requirements needed to meet system needs
2. Select appropriate methods for information presentation
3. Create documents, reports, or other formats containing system-produced information

Information system output should accomplish one or more of these objectives:

- Communicate information about past activities, current status, or future projections
- Signal important events, opportunities, problems, or warnings
- Trigger actions
- Confirm actions

6. IMPLEMENTATION

6.1 Introduction

The implementation phase converts system design into a functional system. For the cyber-attack detection system, this involves establishing the environment, developing modules for data collection, preprocessing, detection, and alerting, and integrating these components into a unified solution.

Fig 1: Home screen

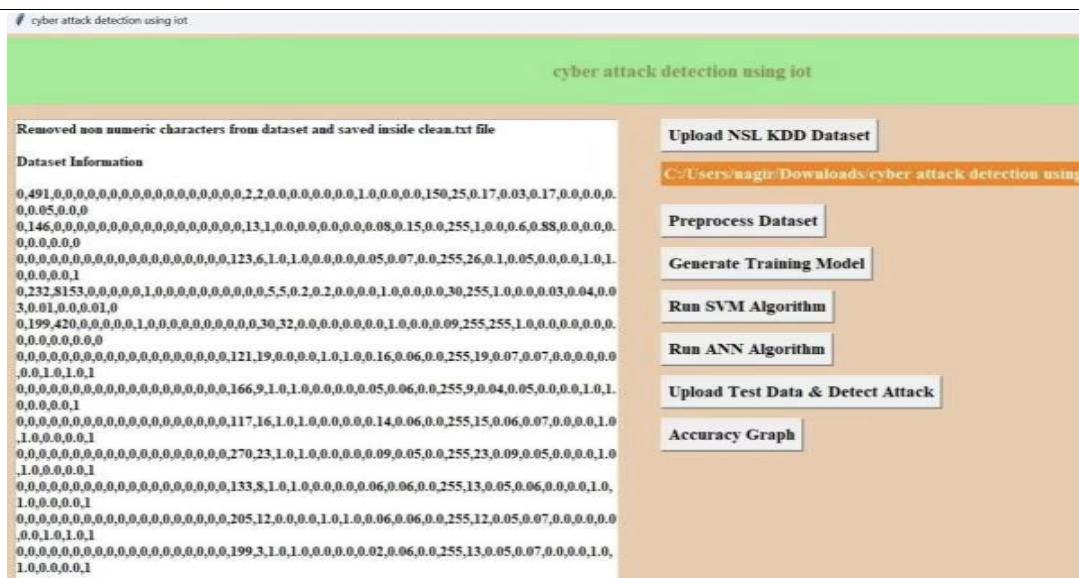


Fig 2: Entering the Dataset information

Fig 3: Model Traning

Fig 4: Results

6.2 Development Environment

The development environment for this project encompasses both hardware and software components necessary for building and testing a cyber-attack detection system in IoT settings. The system utilizes Python 3 for its simplicity and robust libraries including NumPy, pandas, scikit-learn, and matplotlib, which facilitate data processing, machine learning, and visualization.

Development and testing were conducted using Visual Studio Code and Jupyter Notebook on Windows 10 or Ubuntu-based systems with minimum Intel i5 processor and 4GB RAM specifications. Network packet capture and traffic analysis utilized Wireshark, while MQTT protocol implementation employed tools like Mosquitto and Node-RED for IoT communication simulation.

Implementation Process:

Entropy Calculation: Entropy is computed for selected attributes (such as source IP or destination port) within defined time windows. Shannon entropy formula is applied:

- $H(X) = -\sum P(x) \log_2 P(x)$
- where $P(x)$ represents the probability of each unique value in traffic data

Threshold Comparison: (Original image caption - add image here) Calculated entropy is compared against baseline (normal traffic) thresholds. Significant entropy drops indicate abnormal behavior, suggesting potential DDoS attacks.

Attack Detection and Classification: When entropy falls below thresholds, the system identifies potential DDoS attacks. Additional analysis determines specific attack types (e.g., SYN flood, UDP flood).

Alert Generation: (Original image caption - add image here) Upon attack detection, alerts are triggered. Alerts include details such as attack timing, affected IP addresses, and detected DDoS types.

User Interaction: (Original image caption - add image here) Through user interfaces, authenticated users (network administrators) can log in, view logs, monitor real-time traffic, and receive alerts.

7. CONCLUSION

This research concentrated on creating an effective and real-time cyber-attack detection system designed for Internet of Things (IoT) networks. Given the expanding integration of IoT devices across various sectors and their inherent security weaknesses, developing a robust detection mechanism is essential.

The system was engineered to capture and analyze network traffic from IoT devices, preprocess data to extract significant features, and employ machine learning classifiers such as Decision Trees and Logistic Regression to identify malicious activities. The modular design facilitates scalability and seamless integration with existing IoT infrastructures.

Cyber Attack Detection using IoT has highlighted the critical requirement for enhanced security mechanisms in the rapidly expanding Internet of Things ecosystem. The distinctive characteristics of IoT devices—including limited computational resources, diverse protocols, and widespread deployment—create substantial challenges for traditional cybersecurity methodologies.

Through implementing advanced detection techniques, including real-time anomaly detection and intelligent machine learning algorithms, this project successfully identifies and mitigates various cyber-attacks targeting IoT networks. The deployment of an efficient and scalable detection system ensures enhanced protection of sensitive data and continuous service availability.

The findings emphasize that continuous monitoring, adaptive security strategies, and proactive attack detection are fundamental for protecting IoT environments. This project establishes a foundation for future research and development to create more resilient and secure IoT infrastructures.

8. REFERENCES

- [1] Alrawashdeh, A., & Purdy, C. (2019). Internet of Things Security: A Survey. *IEEE Access*, 7, 157496-157512. <https://doi.org/10.1109/ACCESS.2019.2947403>
- [2] Meidan, Y., Bohadana, M., Shabtai, A., et al. (2018). N-BaIoT—Network-Based Detection of IoT Botnet Attacks Using Deep Autoencoders. *IEEE Pervasive Computing and Communications Workshops (PerCom Workshops)*, 2018.
- [3] Scikit-learn: Machine Learning in Python. Pedregosa, F., Varoquaux, G., Gramfort, A., et al. (2011). *Journal of Machine Learning Research*, 12, 2825–2830. <http://jmlr.org/papers/v12/pedregosa11a.html>
- [4] Satyanarayana, M. (2017). The Emergence of Edge Computing. *Computer*, 50(1), 30-39. <https://doi.org/10.1109/MC.2017.9>
- [5] Conti, M., Dehghanianha, A., Franke, K., & Watson, S. (2018). Internet of Things security and forensics: Challenges and opportunities. *Future Generation Computer Systems*, 78, 544-546.
- [6] Chen, T., Goodall, J. R., & Yang, H. (2019). Anomaly detection in IoT networks based on machine learning techniques. *IEEE Internet of Things Journal*, 6(2), 3242-3253.