

INTERNATIONAL JOURNAL OF PROGRESSIVE

RESEARCH IN ENGINEERING MANAGEMENT

AND SCIENCE (IJPREMS)

Vol. 04, Issue 01, January 2024, pp : 138-142

e-ISSN :

 2583-1062

Impact

 Factor :

5.725
www.ijprems.com

editor@ijprems.com

@International Journal Of Progressive Research In Engineering Management And Science Page | 138

DEALCRAKER: A PRODUCT PRICE MONITORING APPLICATION

Mrs. Rikeeta Mahajan1, Mr. Swayam Dusing2, Mr. Siddhant Dane3, Mr. Manas Patil4,

Mr. Smit Pandit5

1Professor, Computer Engineering, Sandip Foundation’s Sandip Polytechnic, Nashik, Maharashtra, India.

2,3,4,5student, Computer Engineering, Sandip Foundation’s Sandip Polytechnic, Nashik, Maharashtra, India.

ABSTRACT

An Effective Price Monitoring Application is essential for today’s E-Commerce websites. By studying some factors

that impact customers during online shopping we found that the price of a product can vary across various platforms

and sometimes this E-Commerce platform provides flash sales for very short periods of time. These factors make it

difficult for customers to manually track product prices and may result in them missing out on good deals. So, in-order

to resolve this concern, we have designed an Android Application which enables users to easily track product prices

across different online E-commerce websites like Amazon and Flipkart. Our application requires the user to provide

the URL link of a product and set his/her desired price, in future if the product achieved this desired price, then the

user will be notified via in-app alerts. This enables users to make informed purchasing decisions and take advantage of

cost-saving opportunities thanks to this real time notification mechanism. This Price Monitoring Application is a

useful tool for enhancing online shopping experience and optimizing financial decisions as E-Commerce continues to

Develop.

Keywords: Price Tracking, Web Scraping, Product URL, E-Commerce, Web Page Content Extraction

1. INTRODUCTION

The Core Objective of our project is to develop a Price Monitoring Application in the form of a user-friendly mobile

application. This Application will empower users to track and compare the prices of products available on E-

Commerce websites like Amazon and Flipkart, allowing them to make informed purchasing decisions and potentially

save money. Following are the key features of our application:

• Product URL Input: Users will be able to input the URL of a specific product they are interested in purchasing.

This URL will serve as the reference point for tracking the price of that product.

• Multi-Platform Availability: Our application can accept URLs from both Amazon and Flipkart website.

• Price Tracking: Once the user has added a product, our system will regularly monitor its price on the selected E-

Commerce website. This automated tracking process will provide users with up-to-date information regarding any

changes in the product’s price.

• Price Drop Notifications: The application will notify users whenever there is a price drop for the monitored

product. These Notifications can be delivered through various channels, such as in-app alerts, emails, or push

notification depending on user preferences.

• Historical Price Data: Users will have access to historical price data for the products they are monitoring.

• User-Friendly Interface: The user interface will be intuitive and easy to navigate, making it accessible to users

with varying levels of technical expertise.

2. METHODOLOGY

The Methodology behind the Deal Craker typically involves a combination of concept of Web Scraping and Android

Development that works together to fetch product data from E-Commerce platforms and alert users regarding the

fluctuation in product prices.

2.1 Project Scope: The project scope encompasses thorough requirements gathering and ongoing user feedback

sessions to ensure alignment with user expectations. The backend, implemented in Python, employs libraries like

requests and selectorlib for efficient HTML data extraction from e-commerce websites, providing a modular and

scalable solution. Integration involves the development of an Android application that seamlessly interacts with the

backend, empowering users to input product URLs and access scraped e-commerce data with a focus on optimal

usability and responsiveness.

2.2 Data Collection and Scraping: Our backend infrastructure is implemented in Python, leveraging essential

libraries such as requests and selectorlib for the purpose of scraping HTML data from e-commerce websites. This

approach allows us to efficiently retrieve and process product information from the targeted platforms. The script

dynamically determines the e-commerce site based on the input URL and employs selector files to extract relevant

data. This Python script employs the FastAPI framework to create a web service for scraping product data from e-

INTERNATIONAL JOURNAL OF PROGRESSIVE

RESEARCH IN ENGINEERING MANAGEMENT

AND SCIENCE (IJPREMS)

Vol. 04, Issue 01, January 2024, pp : 138-142

e-ISSN :

 2583-1062

Impact

 Factor :

5.725
www.ijprems.com

editor@ijprems.com

@International Journal Of Progressive Research In Engineering Management And Science Page | 139

commerce websites such as Flipkart and Amazon. It defines one main endpoint, /scrape, utilizing the selectorlib

library for data extraction based on YAML selector files. The scrape function dynamically determines the e-commerce

site from the input URL and fetches data accordingly and returns the data in JSON format. Additionally, there is a

special case in the scrape function for a specific URL pattern ("SMSSPRODUCT"), which returns pre-loaded data

from a JSON file. The Objective behind SMSSPRODUCT is to load the data of a sample product available on our

application, this also helps the user to understand the process of using our app. The script sets up appropriate HTTP

headers to mimic a browser, and the FastAPI application can be run using the uvicorn server. Overall, it provides a

modular and extensible solution for extracting product information from diverse online platforms. The backend

program can be hosted either on a dedicated server or utilizing the NGROK service, which effectively transforms our

localhost into a globally accessible host.

2.3 Integration with Android Application: This project not only focuses on creating a robust backend infrastructure

but also includes building an Android application. The Android app acts as an essential interface, communicating

easily with the Python-based backend. Its primary function is to empower users to initiate background queries for

efficient data recovery. By creating an easy-to-use interface, the app greatly improves the overall user experience and

provides an easy way to access e-commerce data through the Scraping Application. The Android application is

conceived into five distinct screens, each serving a specific purpose. The first screen acts as the home page, providing

an overview of available features. The second screen allows you to search for products and link directly to popular e-

commerce platforms like Amazon and Flipkart. Going to the third screen, users can see a list of content they are

currently tracking. The fourth screen acts as a container, making it easy to enter detailed product information and

allowing users to set price alerts. Finally, the fifth panel integrates the WebView option, allowing users to browse

eCommerce platforms within the application, which allow user to select the products from the platforms and directly

add the product to track within the app. Application adopts MVVM architecture, using ViewModels for business logic

and Views for user interface The user interface is built using the JETPACK Compose framework with Kotlin.

Asynchronous operations are best handled through Kotlin coroutins, while Coil is used for asynchronous image

loading. In-house libraries are used for local database management, ensuring easy seamless storage of essential data.

Networking and HTTP requests are done through the OkayHTTP library, while background processing is handled by

WorkManager. The LOTTIE library is used to add interesting graphics to the user interface, enhancing the overall

visual appeal of the application. Webview Functionality: Users can open WebView within the application, allowing

them to select and initiate tracking of objects. The URL of the selected object is sent to the custom API backend

server, which responds with product data in JSON format. This data is then fed into the product loader screen, where

users can enter a value for the alert. The input data is stored locally on the device using the Room library. Background

processing and cost management: Background processing managed by WorkManager continuously runs on the

machine, ensuring seamless management. The service retrieves data from a local database and makes API calls for

each object using the OkayHTTP library. The new value of the item is compared to the user-defined expected value. If

the new value matches or falls below the expected value, a notification is triggered to alert the user.

3. MODELING AND ANALYSIS

The activity diagram visually represents the workflow and dynamic aspects of a project, illustrating the sequential

flow of activities and interactions among components to enhance understanding and facilitate efficient project

management.

 Figure 1: Activity Diagram

INTERNATIONAL JOURNAL OF PROGRESSIVE

RESEARCH IN ENGINEERING MANAGEMENT

AND SCIENCE (IJPREMS)

Vol. 04, Issue 01, January 2024, pp : 138-142

e-ISSN :

 2583-1062

Impact

 Factor :

5.725
www.ijprems.com

editor@ijprems.com

@International Journal Of Progressive Research In Engineering Management And Science Page | 140

.A use case diagram visually represents how users interact with a system, outlining the system's functionalities and the

various ways users can engage with it.

Figure 2: Use Case Diagram

4. RESULTS AND DISCUSSION

The below image showcases the simultaneous operation of the NGROK service and a localhost server. NGROK plays

a crucial role in elevating the accessibility of the localhost server to a global scale, enabling universal access to the

hosted program.

Figure 1. Execution of NGROK service and localhost

The below image illustrates the data returned in JSON format after sending a request to the hosted program through

RestAPI. The request is sent to the hosted program using a link containing the NGROK subdomain name and a

product link. The hosted program identifies the product's platform based on the link, proceeds to download, and scrape

the product data, and subsequently returns the extracted information in JSON format.

RestApi link: https://carefully-flying-lioness.ngrok-free.app/scrape?url=https://amzn.eu/d/5JF2IzF

Here,

https://carefully-flying-lioness.ngrok-free.app is a NGROK subdomain "carefully-flying-lioness".

/scrape?url= is a Path and Query Parameter.

https://amzn.eu/d/5JF2IzF is a link of product in Amazon Website.

INTERNATIONAL JOURNAL OF PROGRESSIVE

RESEARCH IN ENGINEERING MANAGEMENT

AND SCIENCE (IJPREMS)

Vol. 04, Issue 01, January 2024, pp : 138-142

e-ISSN :

 2583-1062

Impact

 Factor :

5.725
www.ijprems.com

editor@ijprems.com

@International Journal Of Progressive Research In Engineering Management And Science Page | 141

Figure 2. Product Data in JSON format is returned after scraping

Following are the snapshots of Deal Craker Application:

Home Page Search Page Product Loader Page

List of Product Being Tracked WebView for Amazon and Flipkart Notification after Set Price

achieved.

INTERNATIONAL JOURNAL OF PROGRESSIVE

RESEARCH IN ENGINEERING MANAGEMENT

AND SCIENCE (IJPREMS)

Vol. 04, Issue 01, January 2024, pp : 138-142

e-ISSN :

 2583-1062

Impact

 Factor :

5.725
www.ijprems.com

editor@ijprems.com

@International Journal Of Progressive Research In Engineering Management And Science Page | 142

5. CONCLUSION

In Conclusion, the need of applications like Deal Craker is increasing rapidly as more and more people are now

shifting to Online Shopping. In future the number of online shopping platforms will increase which will cause

headaches to customers to find a perfect deal among various platforms. So mobile application empowers users or

customers to effortlessly track and compare product prices across major E-commerce platforms. In summary, our

Price Monitoring Application stands as a testament to the successful integration of advanced features, user-centric

design, and functionality, ultimately empowering users to make informed and cost-effective purchasing decisions in

the dynamic landscape of online shopping.

ACKNOWLEDGEMENTS

With a deep sense of gratitude, we would like to thank all the people who have lit our path with their kind guidance.

We are very grateful to these intellectuals who did their best to help during our project work planning. It is our proud

privilege to express a deep sense of gratitude to Prof. P.M. Dharmadhikari, Principal of Sandip Polytechnic, Nashik,

for his comments and kind permission to complete this project work planning. We remain indebted to Prof. G. K.

Gaikwad, H.O.D, Computer Engineering Department for their timely suggestion and valuable guidance. Our special

gratitude goes to my guide Prof. Rikeeta C. Mahajan and staff members, technical staff members of Computer

Engineering Department for their expensive, excellent, and precious guidance in completion of this work planning.

We thank all our colleagues for their appreciable help for our project work planning. With various industry owners or

lab technicians to help, it has been our endeavor to throughout our work to cover the entire project work planning.

And lastly, we thanks to our all friends and the people who are directly or indirectly related to our project work

planning.

6. REFERENCES

[1] https://chat.openai.com/ for learning and understanding.

[2] https://www.youtube.com/ @PhilippLackner for android development

[3] https://github.com for uploading our project files.

[4] https://ngrok.com for NGROK Service

[5] https://flask.palletsprojects.com/en/3.0.x/ for flask service

[6] https://fastapi.tiangolo.com for fastapi service

[7] https://pypi.org/project/selectorlib/ for python selectorlib library

[8] https://pypi.org/project/requests/ for python request library

[9] https://www.amazon.in for product link and data

[10] https://www.flipkart.com for product link and data

[11] https://www.figma.com for UI/UX reference

[12] https://developer.android.com/courses/jetpack-compose/course for android development

[13] https://square.github.io/okhttp/ for http handling in android

[14] https://developer.android.com/topic/libraries/architecture/workmanager for scheduling tasks in android

[15] https://developer.android.com/reference/android/arch/persistence/room/RoomDatabase for database in android

[16] https://developer.android.com/codelabs/kotlin-coroutines for kotlin-coroutines

[17] https://developer.android.com/topic/libraries/architecture/viewmodel for view models

[18] https://www.geeksforgeeks.org/how-to-use-coil-image-loader-library-in-android-apps/ for image loading

