

DESIGN AND ANALYSIS OF AN AEROSPACE BRACKET BY ADDITIVE MANUFACTURING WITH CONTINUOUS FIBER REINFORCED PLASTICS

Dr. D. Lavanya¹, V. Arulprasan²

¹Assistant professor, Mechanical Engineering, Government College of Engineering, Salem, Tamil Nadu, India

²Master of Engineering, Mechanical Engineering, Government College of Engineering, Salem, Tamil Nadu, India.

ABSTRACT

This research investigates the effects of building parameters for 3D printing Carbon Fiber Reinforced Polymers (CFRP) and Glass Fiber Reinforced Polymers (GFRP) their effect on topologically optimized complex models. In this study specimen with an infill ratio of 40% (constant Triangular, Rectangular and Hexagonal infill pattern) was followed. From the results it can be observed that found to have the best performance recording a length extension in tensile and highest flexural strength can be obtained. a static analysis and topology optimization for the 3D printed material (Nylon with CFRP (Onyx)) to be performed on an industrial part for its design validation. As per our work we are making the Aerospace Bracket by using this Carbon fiber material which is of light weight and strong while compared to the material used now. The Design of the Aerospace Bracket is designed by using the standard CATIA Software. This study will help industries to use these 3D printing parameters where a metal-based components needs to be replaced with CFRP.

Keywords: 3D Printing, CFRP, GFRP, Onyx, Infill ratio, Infill Pattern.,

1. INTRODUCTION

3D PRINTING

3D printing, also known as additive manufacturing, is a revolutionary technology that enables the creation of three-dimensional objects from a digital file. Unlike traditional manufacturing processes that involve subtracting material through cutting or drilling, 3D printing builds objects layer by layer, allowing for complex and intricate designs.

The 3D printing process typically involves the following steps:

Design: Creation of a digital 3D model using computer-aided design (CAD) software or 3D scanning.

Slicing: The 3D model is sliced into thin horizontal layers to prepare it for printing.

Printing: The 3D printer reads the sliced file and deposits material layer by layer to create the physical object.

OBJECTIVE OF PROJECT

The objectives of 3D printing encompass a range of goals, including technological advancements, industrial applications, and societal benefits. Some of the key objectives of 3D printing include:

Innovation and Design Flexibility, Cost-Effective Production, Customization and Personalization, Reduced Time-to-Market, Aerospace and Defense Applications

Sustainability and Waste Reduction:

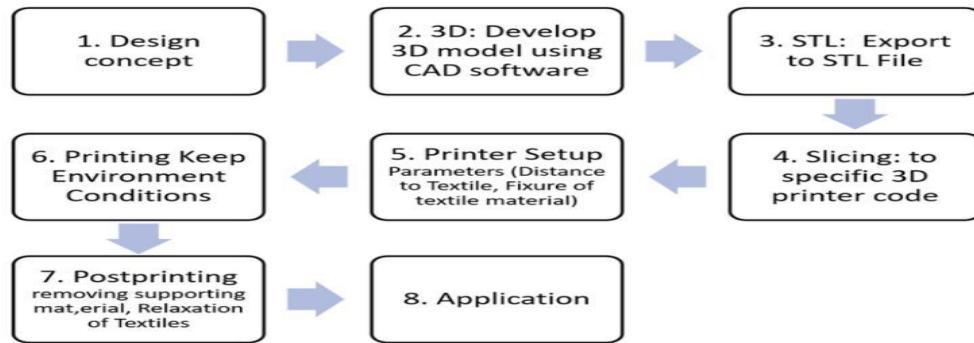

Application of 3D Printing

Fig.1

2. MATERIAL SELECTION

Material selection refers to the process of choosing the most suitable material for a specific application or product design. It involves considering various factors such as mechanical properties, cost, availability, environmental impact, and manufacturing requirements.

Fig 2 . Steps in 3D Printing

2.1 3D PRINTING MATERIALS

3D printing, also known as additive manufacturing, utilizes various materials to create three-dimensional objects based on digital models. Several types of materials can be used for 3D printing, each with its own unique properties and applications. Some common 3D printing materials include:

1. Plastics
2. Resins
3. Metals
4. Ceramics
5. Composites

. Fig 3. 3D Printing Filament

2.3 NYLON WITH CARBON REINFORCED POLYMER

. Fig 4. CFRP Filament

2.4 PROPERTIES OF CFRP FILAMENT

Property	Value
Shore Hardness	45D
Density	1.3 g/cm ³ (1300 kg/m ³)
Heat Deflection	21% to 85°C
Shrinkage	Very Low, When Cooling to Elevated Ambient Temperature

Fig.5

2.5. NYLON WITH GLASS REINFORCED POLYMER

Fig 6. GFRP Filament

Nylon with glass fiber reinforced polymer, often referred to as nylon-GFRP, is a composite material that combines the properties of nylon with the added strength and stiffness of glass fibers. This composite material is created by incorporating glass fibers into a nylon matrix, resulting in a product that exhibits improved mechanical properties compared to standard nylon materials.

2.6. PROPERTIES OF GFRP

Trade Name	Density (g/cm ³)	Tensile Strength (MPa)	Modulus of Elasticity (GPa)	Extension to Break (%)	Coefficient of Thermal Expansion (10 ⁻⁶ /°C)
E-glass	2.5	3450	72.4	2.4	5.0
S-glass	2.5	4580	85.5	3.3	2.9
C-glass	2.5	3300	69	2.3	n/a
AR-glass	2.27	1800–3500	70–76	2.0–3.0	n/a

Fig.7

2.7. ONYX PLASTIC MATERIAL

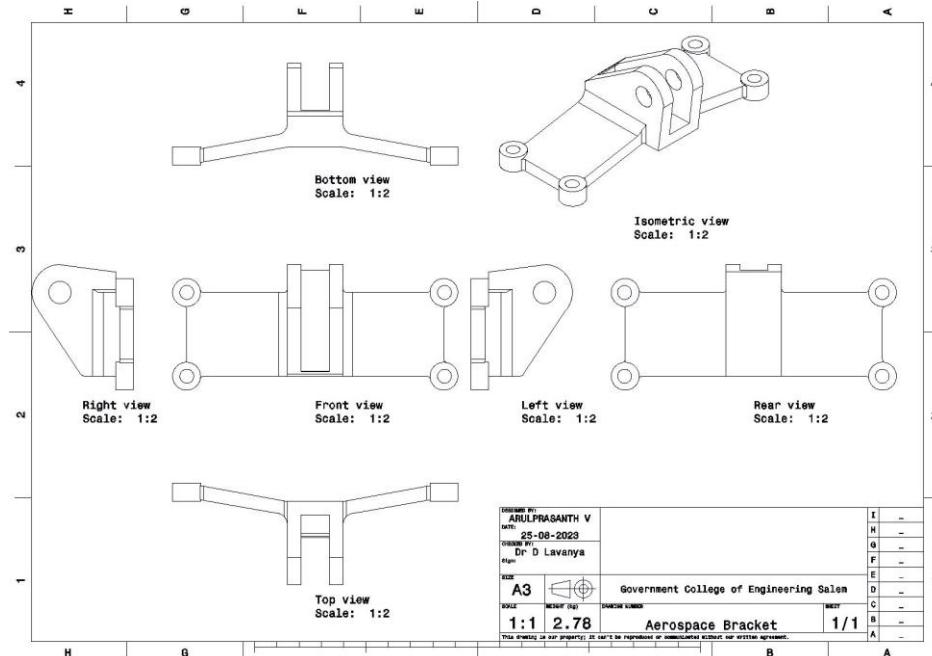
. Fig 8. Onyx Plastic Materials

Onyx is a proprietary engineering-grade thermoplastic material developed by Markforged, a 3D printing technology company. It is known for its high strength, durability, and heat resistance, making it suitable for a wide range of industrial applications. Onyx is commonly used as a base material for composite 3D printing, where it can be reinforced with continuous strands of carbon fiber, fiberglass, or Kevlar to create parts with even greater strength and stiffness.

2.7 PROPERTIES OF ONYX PLASTIC MATERIALS

Property	Test Standard	Onyx	Nylon
Tensile Strength (MPa)	ASTM D638	36	54
Tensile Modulus (GPa)	ASTM D638	1.4	0.94
Tensile Strain at Break (%)	ASTM D638	58	260
Flexural Strength (MPa)	ASTM D790*	81	32
Flexural Modulus (GPa)	ASTM D790*	2.9	0.84
Flexural Strain at Break (%)	ASTM D790*	N/A**	N/A**
Heat Deflection Temperature (°Celcius)	ASTM D648 Method B	145	44-50
Density (g/cm ³)	N/A	1.18	1.10

Fig.9


3. DESIGN OF AEROSPACE BRACKET

3.1 CATIA SOFTWARE

CATIA is a multi platform 3D software suite developed by Dassault Systems, CATIA is a solid modelling tool that unites the 3D parametric features with 2D tools and also addresses every design-to-manufacturing process. In addition to creating solid models and assemblies, CATIA also provides generating orthographic, section, auxiliary, isometric or detailed 2D drawing views. CATIA provides the capability to visualize designs in 3D.

3.2 DESIGN

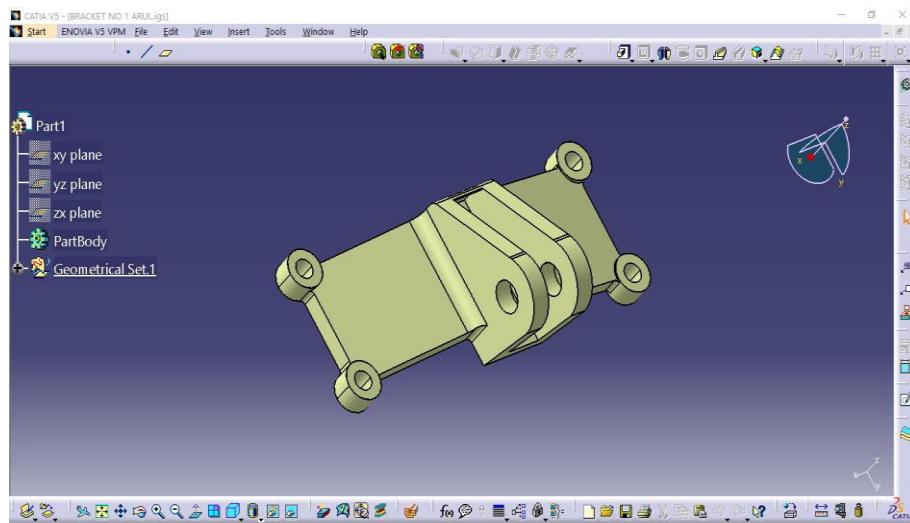
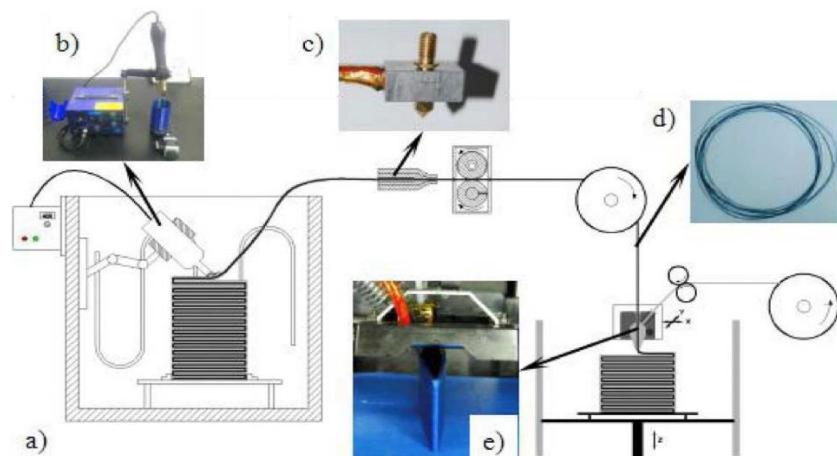

Drafting Workbench allows you to create an orthographic projection or drawing (CATIA Drawing) directly from a 3D part (CATIA Part) or assembly (CATIA Product). A CATIA Drawing contains a structure listing similar to a specification tree

Fig 10. Drafting

3.2 PRODUCT

The product in Catia is an assembly of parts that, in terms of building the assembly with constraints, will use the assembly as a whole. To Assemble a CATIA V5 Part in an Existing Assembly. 1. Click Component > Assemble > Assemble with an assembly open.

Fig.11


4. PREPARATION OF PRODUCTS

4.1 3D PRINTING MACHINE

The Mark forged Mark Two is a professional-grade 3D printer that offers industrial-level capabilities and is known for its ability to print with high-strength materials. It is produced by Mark forged, a leading company in the field of industrial 3D printing. The Mark Two is particularly well-regarded for its composite 3D printing capabilities, which enable the creation of strong, robust, and functional parts for various applications.

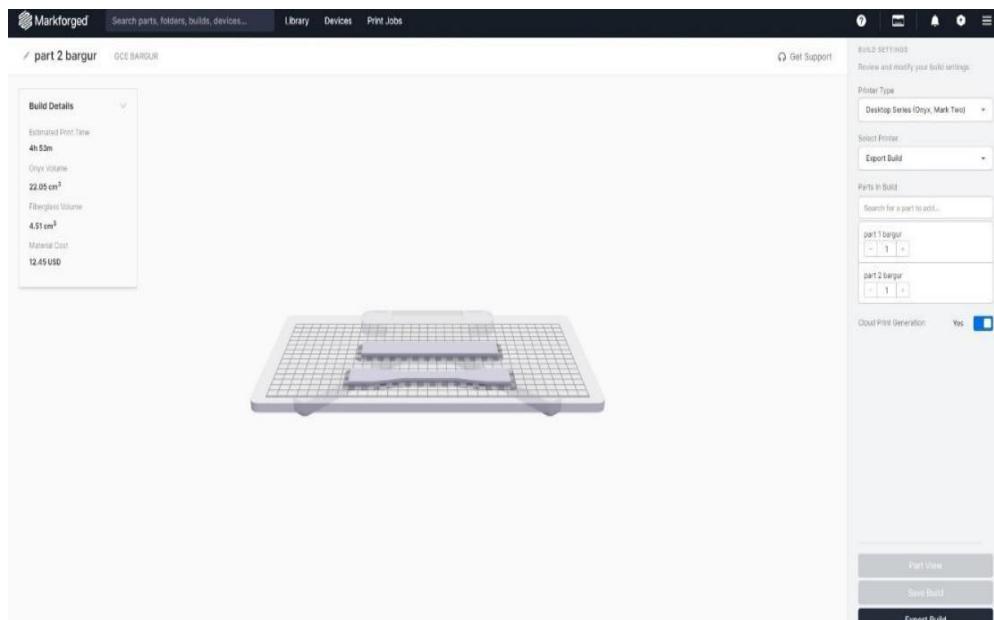
Fig. 12. 3D Printing Machine

Fig.13. Manufacturing Process of 3D Printing

Fig.14. Printing of Products

GEOMETRY SPECIFICATION OF PRODUCTS

The preparation of specimen is based on the required specification which is tabulated below


Specification of specimen for Tensile Test	
Length	165mm
Breadth	13mm
Thickness	3mm

Specification of specimen for Flexural Test	
Length	125mm
Breadth	13mm
Thickness	3mm

The specimen is fabricated based on the above parameters and the specimens are prepared under the ASTM D - 638 STANDARDS for Tensile test, ASTM D – 790 for Flexural test.

FABRICATED SPECIMEN

parameters and the specimens are prepared under the ASTM D - 638 STANDARDS for Tensile test

Fig.15 Slicing the model

Fig.16. Fabricated Tensile And Flexural Test Specimen

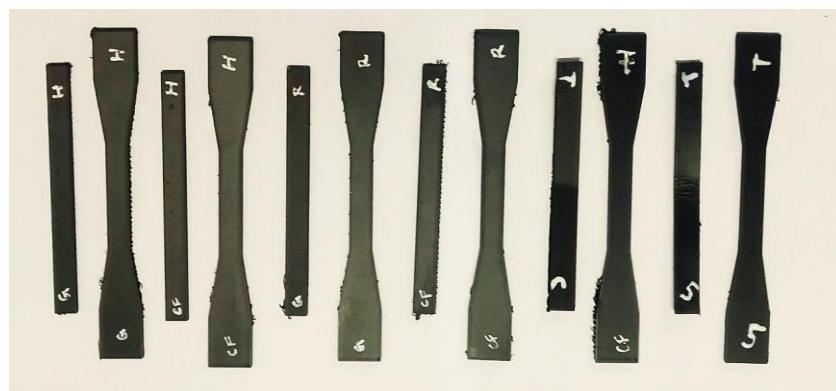


Fig.17 Fabricated Flexural And Tensile Test Specimen

5. TEST ANALYSIS

Fig 18.- UTM for Tensile Test

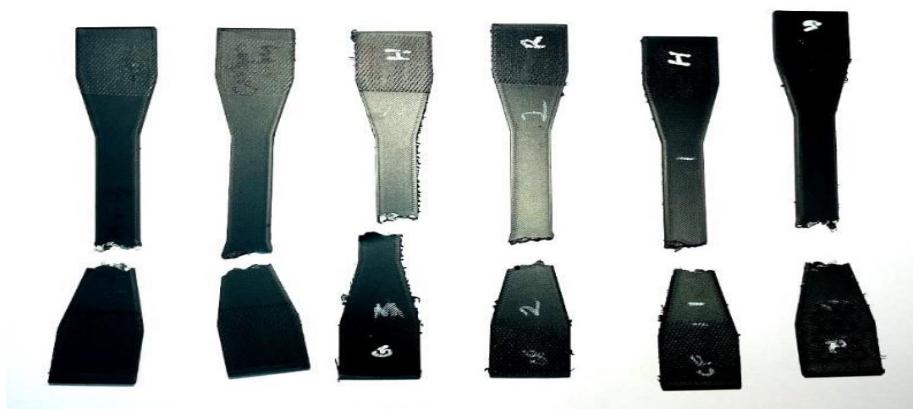


Fig 19 - Tensile Testing Specimen

Test Name : TENSILE TEST	Test Type : Normal	Test Mode : Tensile
Elongation Device : CrossHead	Test Parameter : Peak Load	Test Speed [mm/min] : 2.00

Sample No.	CS Area[mm ²]	Peak Load [N]	%Elongation	UTS [N/mm ²]
CFRP/ONYX Hexagonal	39.000	2713.142	3.870	69.573
CFRP/ONYX Rectangle	39.000	2587.319	2.220	66.345
GFRP/ONYX Hexagonal	39.000	2717.988	6.840	69.690
GFRP/ONYX Rectangle	39.000	2718.861	7.650	69.710
CFRP/ONYX Triangle	39.000	2537.023	2.330	65.050
GFRP/ONYX Triangle	39.000	2714.613	10.780	69.602

Summary Report

	CS Area[mm ²]	Peak Load [N]	%Elongation	UTS [N/mm ²]
Min	39.000	2587.319	2.220	66.345
Max	39.000	2718.861	7.650	69.710
Avg	39.000	2684.327	5.145	68.829
Std Dev.	0.000	64.721	2.538	1.657
Variance	0.000	4188.851	6.443	2.747
Median	39.000	2715.565	5.355	69.631

Fig 20- UTM For Flexural Test

TESTING OF SPECIMEN

Fig21

Sample Name	CS Area[mm ²]	Peak Load [N]	Flexural Strength(MPa)	Flexural Modulus (GPa)
CFRP/ONYX Hexagonal	39.000	191.678	122.871	3143.786
CFRP/ONYX Rectangle	39.000	203.479	130.435	3175.481
GFRP/ONYX Hexagonal	39.000	151.437	97.075	3212.251
GFRP/ONYX Rectangle	39.000	131.650	84.391	2907.496
CFRP/ONYX Triangle	39.000	117.307	75.235	1060.897
GFRP/ONYX Triangle	39.000	103.476	66.331	805.288

Summary Report :

	CS Area[mm ²]	Peak Load [N]	Flexural Strength(MPa)	Flexural Modulus (GPa)
Min	39.000	131.650	84.391	2907.496
Max	39.000	203.479	130.435	3212.251
Avg	39.000	169.561	108.693	3109.754
Std Dev.	0.000	33.691	21.597	137.710
Variance	0.000	1135.095	466.432	18964.050
Median	39.000	171.557	109.973	3159.634

6. CONCLUSION

The present work describes about the tensile and flexural characterization of CFRP and GFRP filament with onyx plastic material with Triangular, Rectangular and Hexagonal infill pattern in experimental results. From the experimental observation the test specimen CRPF with Onyx rectangular pattern have significantly better tensile and flexural strength. The experiment test was furnished to conclude the material stability. As per our work the Aerospace Bracket in Carbon Fiber material which is light weight, strong and have better mechanical and physical characterization

7. REFERENCES

- [1] S.H. Masood. Advances in Fused Deposition Modeling. Comprehensive Materials Processing 2014; Elsevier, 10, 69-91
- [2] M.d. Hazrat Ali, Z. Smagulov, T. Otepbergenov, Finite element analysis of the CFRP-based 3D printed ankle-foot orthosis, Procedia Comput. Sci. 179 (2021) 55–62.
- [3] M.Manoj Prabhakar, A.K. Saravanan, A.Haiter Lenin, I.Jerin Ileno, K.Mayandi, P. Sethu Ramalingam. A short review on 3D printing methods, process parameters and materials. Materials Today Proceedings 2021; 45, 6108–6114n.
- [4] Ting Wang, Nanya Li, Guido Link, John Jelonnek, Jürgen Fleischer, Jorg Dittus, Daniel Kupzik. Load-dependent path planning method for 3D printing of continuous fiber reinforced plastics. Composites: Part A 2021; 140, 106181.
- [5] N. Kumekawa, Y. Mori, H. Tanaka, R. Matsuzaki, Experimental evaluation of variable thickness 3D printing of continuous carbon fiber-reinforced composites, Compos. Struct. 288 (2022).
- [6] Keiichi Shirasu, Masayoshi Mizutani, Naoki Takano, Hajime Yoshinaga, Tsuyoshi Oguri, Ken-ichi Ogawa, Tomonaga Okabe, Shigeru Obayashi. Lapshear strength and fracture behavior of CFRP/3D-printed titanium alloy adhesive joint prepared by hot-press-aided co-bonding. International Journal of Adhesion & Adhesives 2022; 117, 103169.
- [7] J. Kajimoto, J. Koyanagi, Y. Maruyama, H. Kajita, R. Matsuzaki, Automated interlaminar reinforcement with thickness directional fiber arrangement for 3D printing, Compos. Struct. 286 (2022).
- [8] M. Vaezi, C.K. Chua, Effects of layer thickness and binder saturation level parameters on 3D printing process, Int. J. Adv. Manuf. Technol. 53 (2011)275– 284.