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ABSTRACT

The design and testing of digital circuits and systems has undergone a paradigm shift in recent times with the advent
of artificial intelligence. It was customary to design digital circuits using the knowledge of the internal circuitry or the
input-output mapping or truth table of the circuit. Some modern applications though need interactive behavior from
systems which finally boils down to the interactive design of digital circuits. Some example can be the internal
circuitry of interactive gaming consoles, vending machines, sequence detectors, human machine interfaces (HMI) etc.
The aim is to design an Artificial Intelligence based system which would get trained using the limited input-output
mapping of the circuit and be able to predict the future behavior of the circuit.

1. INTRODUCTION

1.1 DIGITAL CIRCUIT DESIGN

The basic building blocks of digital circuits are Gates. Gates can be thought of as entities which take logic 0 or 1 as
input combinations and yield an output depending on the logical operation on the inputs. Needless to say, the output is
also in the form of 0 and 1. Logic gates serve as the basic building block for digital circuits. Digital circuits can be
broadly classified as:

1) Combinational Circuits.

2) Sequential Circuits.

1.1.1 Combinational Circuit:-A combinational circuit is the digital logic circuit in which the output depends on the
combination of inputs at that point of time with total disregard to the past state of the inputs. The digital logic gate is
the building block of combinational circuits
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Figurel - Combinational Circuit
1.1.2 Sequential Circuit:- The sequential circuit is a special type of circuit that has a series of inputs and outputs.
The outputs of the sequential circuits depend on both the combination of present inputs and previous outputs. The
previous output is treated as the present state
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Figure. 2 -Sequential Circuit
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1.2 FINITE STATE MACHINES

State machines are a method of modeling systems whose output depends on the entire history of their inputs, and not
just on the most recent input. State machines can be used to model a wide variety of systems, including:

e user interfaces, with typed input, mouse clicks, etc.;

e conversations, in which, for example, the meaning of a word “it” depends on the history of things that have been
said;

e the state of a spacecraft, including which valves are open and closed, the levels of fuel and oxygen, etc.; and

e the sequential patterns in DNA and what they mean.

State machine models can either be continuous time or discrete time. In continuous time models, we typically assume

continuous spaces for the range of values of inputs and outputs, and use differential equations to describe the system’s

dynamics.

1.2.1 Primitive state machines

We can specify a transducer (a process that takes as input a sequence of values which serve as inputs to the state

machine, and returns as output the set of outputs of the machine for each input) as a state machine (SM) by specifying:

e asetof states, S,

e asetof inputs, I, also called the input vocabulary,

e aset of outputs, O, also called the output vocabulary,

e anext-state function, n(i;, St) — sw1, that maps the input at time t and the state at time t to the state at time t + 1,

e an output function, o(it, St) — o, that maps the input at time t and the state at time t to the output at time t; and

e aninitial state, so, which is the state at time 0.

1.2.2 Mealy Machine

In this model of FSM, the output values are determined both by its current state and the current inputs. In the figure

1.2 it is shown that the input is fed to the combinational circuit C1 and then a state register is used to store the output

of C1. The input and the output of the register fed to the second combinational circuit C2. Hence the output is

determined both by present state and input.
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Figure 3. Mealy Type NMachine

Figure.3
1.2.2 Moore Machine

A Moore machine is a finite-state machine whose current output values are determined only by its current state. This
is in contrast to a Mealy machine, whose output values are determined both by its current state and by the values of its
inputs. Like other finite state machines, in Moore machines, the input typically influences the next state. Thus the
input may indirectly influence subsequent outputs, but not the current or immediate output.
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2. PROBLEM DOMAIN
Conventionally, all digital circuits are designed by the following to techniques:
1) Prior knowledge of the internal circuitry. For example consider the circuit diagram of a half adder circuit

A
B

C

Figure5. Internal Circuitry of a Half Adder
2) Input — Output mapping of the circuit also called the Truth-

Table.1
Truth Table
Input Output
A B Sum Carry
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

In both the cases, either the internal circuit or the input-output mapping of the circuit was known which meant circuit
design would be possible following standard design steps. The major challenge arrives when neither the internal
circuit nor the truth table of the circuit is known but only certain input output mapping pairs are known which tend to
change. In such cases, it becomes extremely complex to predict the behavior of the circuit. Such applications are
needed in human machine interfaces (HMI) and interactive systems.

The design of such systems requires the need of Artificial Intelligence. There are several Al based algorithms that can
be utilized for the design and prediction of digital circuits. We mainly focus on systems with feedback or systems with
Back Propagation.

3. SOLUTION DOMAIN AND PROPOSED METHODOLOGY
2.1 ANN (Artificial Neural Networks):-

Artificial Neural Networks (ANN) are computing systems or technique that are inspired by the learning architecture
of human brain to discover the relations between the input and target variables of a system. Neurons are simple
processing units, which has the ability to store experimental data and which work as parallely distributed processor.

The axon works as a transmitter of the neuron. It sends signals to neighbouring neurons. The synapse or synaptic
terminal are the connection between the axon of one neuron and the dendrites of neighbouring neutron, which is the
communication link in between the two neurons

Cell Body
or soma
Axon hillock
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Figure 6. Biological Model of Neuron.
Consider a signals, travelling through a path p; from dendrites with weight w; to the neuron. Then the value of signal
reaching the neuron will bes,. w, .If there are “n” such signals travelling through n different paths with weights
ranging from w; to w,, and the neuron has an internal firing threshold value of8,, , then the total activation function of
the neuron isgiven by:
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n
i=1

HereX; represents the signals arriving through various paths,

Wirepresents the weight corresponding to the various paths and 0 is the bias. The entire mathematical model of the
neuron or the neural network can be visualized pictorially or the pictorial model can be mathematically modelled. The
design of the neural network can be modelled mathematically and the more complex the neural design, more is the
complexity of the tasks that can be accomplished by the neural network. The above concept can be visualized by the
following diagram:
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Figure 7: The mathematical formulation of the neural model.

ANN poses great ability to train itself based on the data provided to it for initial training. It has the tendency of self-
organization during learning period and it can perform during real time operation.
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Figure 8: Working model of an ANN
3.2 BACK PROPAGATION
Although the weights of a neural network tend to make subsequent error plummet, yet the rate at which the error
reduces is critical in real time systems. Hence, it is prudent enough to design a system in which errors are fed back to
the system in order to make it realize the amount of error present in every iteration. This technique is called back
propagation.
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4. RESULTS

Before proceeding towards complex FSMs, we start our discussion with the design and implementation of logic gates.
Subsequently, we move on to the design of combinational circuits, sequential circuits and finally sequence detectors.

The circuits simulated are:

1. AND GATE using LM Algorithm

2. HALF ADDER using LM Algorithm

3. JKFLIP FLOP using LM Algorithm

4. A Jordan network implementation of the Half Adder
5. Sequence detector design using LM, BR and SCG algorithms.
6. The performance indices considered here are:

1) Mean Square Error (MSE)

2) Epochs or execution time

3) lterations

4) Error Histograms for Graphical Error Representation
5) Regression

Best Validation Performance is 1.2412e-05 at epoch 3
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Figure 10. MSE analysis for AND Gate
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Figure 11: Training States for AND Gate
Training: R=1 Validation: R=NaN
o
M Q  Data g 0.4 O Data
Q 08| | it o B
% ......... Y=T +- 03[ | o Y=T
o W 02
< 2
e & 0.1
@ c
o o 0
] 1
u 101
- 5
2 202
g 5
3 0 .03
02 0 02 04 06 08 0.2 0 02 04
Target Target
Test: R=NaN All: R=0.82821
1
o~ 04 O Data 2
S —Fit S
03 R
T 9B [wwel Y=T i
o °
g’ 0.2 o
5 T
® 0.1
[ e
o o
! I
- 041 1
a 5
o 02 g_
© o3 o
0.2 0 02 04 02 0 02 04 06 08
Target Target

Figure 12: Regression Analysis for AND Gate

4.2 Half Adder

Figure 13: Logic Diagram of Half Adder
Table. 2. Truth Table for Half Adder

Truth Table
Input Output
A B Sum Carry
0 0 0 0
0 I 1 0
il 0 1 0
1 1 0 1
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Best Validation Performance is 1.2439 at epoch 3
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Figure 14: MSE analysis for Half Adder
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Figure 15: Training States for Half Adder
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Figure 17: Neural Network Design for Half Adder
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Figurel8: Regression Analysis for Half Adder
4.3 JK Flip Flop:
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Figure 19: Logic Diagram of JK Flip Flop
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Figure 20: Truth Table for JK Flip Flop

Best Validation Performance is 0.35535 at epoch 1
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Figure 21: MSE analysis for JK Flip Flop
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Figure 22: Training States for JK Flip Flop
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Figure 24: Neural Network Design for JK Flip Flop
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Figure 25: Regression Analysis for JK Flip Flop
5. CONCLUSION

It can be concluded from the previous discussions that the design and prediction of complex digital circuits is possible
using Artificial Neural Networks (ANN). The benefit of such a system lies in the fact that there is no need of knowing
the internal circuitry or the complete input output mapping of the digital system to predict its performance. The
behavior of the circuit can be predicted by the ANN based system once the system has been trained. This approach
finds extensive application in interactive gaming, Human Machine Interfaces (HMI), hardware level cryptography.

6. FUTURE SCOPE

The future scope can be thought of as in improving and optimizing the present algorithms to attain even better
performance indices such as lesser number of iterations, better regression and lesser MSE. Also the design of cascaded
algorithmic structures can be designed to while retaining the merits of each of the algorithms. Also, more complex
circuits can be tested in real time applications.
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