

EDIBLE VACCINES: INNOVATIONS, MECHANISMS, APPLICATIONS, AND FUTURE PROSPECTS IN IMMUNIZATION

Kumbha Ravindra¹, Patan Aslam Khan²

¹Department Of Pharmaceutical Engineering, Kakinada Institute Of Technological Sciences, Andhra Pradesh, India.

²Department Of Pharmacy, Dr K V Subba Reddy Institute Of Pharmacy, Andhra Pradesh, India.

Correspondence Author Mail: aslamkhanpatany2@gmail.com

ABSTRACT

Edible vaccines are an innovative approach to immunization that harnesses the ability of transgenic plants and animals to produce antigenic proteins capable of eliciting immune responses. The concept, pioneered by Charles Arntzen in 1990, was inspired by the potential to merge biotechnology with agriculture to deliver affordable and accessible immunization solutions. Unlike traditional injectable vaccines, edible vaccines are needle-free, thermally stable, and capable of inducing both systemic and mucosal immunity. Their production involves the insertion of pathogen-derived genes into plant or animal systems, enabling expression of target antigens in consumable tissues such as fruits, tubers, or milk. Upon ingestion, these antigens are processed by the gut-associated lymphoid tissue, leading to the activation of B and T cells and the generation of protective immune responses.

Edible vaccines have been explored for a wide range of infectious diseases, including hepatitis B, cholera, rabies, and, more recently, COVID-19. Veterinary applications have also gained traction, particularly for the immunization of livestock and poultry. Their advantages include cost-effectiveness, simplified logistics, and the ability to bypass cold chain requirements, making them especially attractive for low-resource settings. Despite these promises, several limitations persist, such as dosage standardization, antigen stability, biosafety concerns, and regulatory hurdles. Recent advances in genetic engineering, including chloroplast transformation and CRISPR-Cas9 technologies, are addressing these challenges and paving the way for next-generation edible vaccines. This paper provides a comprehensive review of edible vaccines, their mechanisms, production platforms, applications, challenges, and future perspectives in global healthcare.

1. INTRODUCTION

Vaccination is one of the greatest achievements in modern medicine, credited with preventing millions of deaths and reducing the burden of infectious diseases worldwide. Traditional vaccines, whether live-attenuated, inactivated, or subunit-based, have been instrumental in controlling diseases such as smallpox, polio, measles, and hepatitis. Despite these successes, conventional vaccine production and distribution methods pose several challenges, particularly in low- and middle-income countries. High production costs, strict cold chain requirements, dependence on trained healthcare personnel for administration, and risks associated with needle use limit the universal reach of vaccines (Plotkin, 2014). These challenges prompted researchers to explore alternative strategies for delivering immunization in a safe, cost-effective, and scalable manner. One such strategy is the development of **edible vaccines**, which combine biotechnology with agriculture to produce immunogenic proteins within consumable plant or animal tissues.

The concept of edible vaccines was first proposed by Charles Arntzen in 1990, who envisioned plants as biofactories capable of producing antigenic proteins that could induce protective immunity upon ingestion (Arntzen, 1997). The idea was both elegant and practical: if staple crops could be engineered to carry antigens of pathogenic organisms, vaccines could be delivered through everyday diets, eliminating the need for needles and cold storage. The first experimental success was reported in the early 1990s, when a gene coding for *Streptococcus mutans* surface antigen was expressed in tobacco plants (Curtiss & Cardineau, 1990). This breakthrough demonstrated the feasibility of edible vaccines and laid the groundwork for further research.

Over the years, a wide range of plants—including potatoes, tomatoes, bananas, rice, maize, and lettuce—have been used as hosts for vaccine antigen production. Potatoes and tomatoes were early choices due to their well-established transformation protocols, while bananas gained interest for their acceptance among children and raw edibility. Cereals such as rice and maize have been favored for large-scale production because of their long shelf life and capacity for antigen stabilization (Streatfield, 2005). Parallel to plant systems, animal-based edible vaccines have been explored, with transgenic goats, cows, and chickens engineered to produce recombinant proteins in milk or eggs (Lillico et al., 2005). Together, these platforms illustrate the flexibility of edible vaccine technology.

The immunological rationale behind edible vaccines lies in the stimulation of **mucosal immunity**. The gastrointestinal tract is a primary entry point for many pathogens, and thus mucosal defenses, particularly secretory IgA antibodies, are crucial for protection. When antigenic proteins are delivered via edible vaccines, they are processed by gut-associated lymphoid tissue (GALT), leading to activation of both mucosal and systemic immune responses (Mason et al., 2002). This dual activation is a significant advantage compared to many injectable vaccines that primarily elicit systemic responses.

The global significance of edible vaccines extends beyond immunological benefits. They offer the potential to drastically reduce vaccine costs by eliminating expensive fermentation, purification, and cold-chain logistics. They also remove the risks associated with unsafe injections, which continue to be a public health issue in many developing regions (Simonsen et al., 1999). Furthermore, edible vaccines align with global health priorities, such as the World Health Organization's (WHO) vision for equitable access to vaccines, especially in underserved populations.

Despite the optimism, edible vaccines face considerable hurdles. Dosage standardization remains difficult, as antigen concentration can vary across plant tissues and between harvests. Antigen stability during storage and after cooking is another limitation. Additionally, the use of genetically modified organisms (GMOs) in food production raises regulatory, ethical, and public acceptance concerns (Walmsley & Arntzen, 2000). These barriers have slowed clinical translation, though several edible vaccine candidates have entered preclinical and clinical trials with promising results. For instance, potato-based hepatitis B vaccines demonstrated immunogenicity in humans (Thanavala et al., 2005), and rice-based cholera vaccines have advanced to clinical evaluation (Tokuhara et al., 2013).

The rapid progress in molecular biology and genetic engineering provides new opportunities to overcome existing challenges. Techniques such as chloroplast transformation, which can yield higher antigen expression levels, and CRISPR-Cas9 genome editing, which offers precision in gene insertion, are revolutionizing the field. Moreover, advances in synthetic biology are enabling the design of antigens with improved stability and immunogenicity. These innovations, combined with the growing acceptance of plant-derived pharmaceuticals, suggest that edible vaccines may soon transition from experimental concepts to practical tools in global healthcare.

In this paper, we review the scientific basis, production platforms, applications, advantages, challenges, and future prospects of edible vaccines. By examining both the progress made and the obstacles that remain, we aim to provide a comprehensive understanding of edible vaccines as an emerging immunization strategy that could complement or even replace traditional vaccines in the coming decades.

2. MECHANISM OF ACTION OF EDIBLE VACCINES

The effectiveness of edible vaccines lies in their ability to elicit both **systemic** and **mucosal immune responses** after oral consumption. Unlike injectable vaccines, which typically stimulate systemic immunity through intramuscular or subcutaneous delivery, edible vaccines are ingested and processed by the **gut-associated lymphoid tissue (GALT)**. This route of immunization is particularly advantageous because many pathogens, including viruses, bacteria, and parasites, enter the body through mucosal surfaces such as the gastrointestinal and respiratory tracts (Mason et al., 2002).

2.1 Antigen Expression in Edible Systems

The mechanism begins with the **genetic engineering of plants or animals** to express antigens derived from pathogens. A gene encoding a pathogen's surface protein—often a viral envelope protein or bacterial toxin fragment—is introduced into the genome of the host system. In plants, this can be achieved through **Agrobacterium-mediated transformation** or direct gene transfer methods such as gene gun delivery. In animals, transgenesis enables expression of the antigen in milk, eggs, or tissues. These antigens accumulate in edible plant parts (fruits, tubers, grains) or animal products (milk, eggs), forming the basis of edible vaccines.

2.2 Antigen Uptake in the Gastrointestinal Tract

When consumed, the antigen-containing food is digested in the stomach and small intestine. Some antigenic proteins survive partial degradation and are taken up by **microfold cells (M cells)** located in the Peyer's patches of the intestinal lining. M cells are specialized epithelial cells that transport luminal antigens to immune cells beneath the mucosal surface (Neutra et al., 2001).

Once translocated across the epithelium, the antigens are captured by **antigen-presenting cells (APCs)** such as dendritic cells and macrophages. These APCs process the antigens and present them via **major histocompatibility complex (MHC) molecules** to T-helper cells.

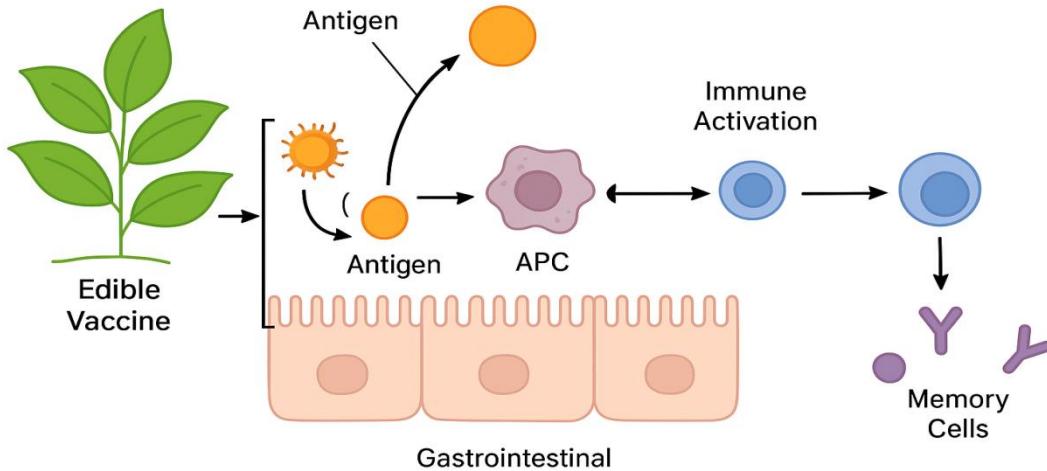
2.3 Immune Activation Pathway

The presentation of antigens to **CD4+ T-helper cells** triggers a cascade of immune responses:

- a) **B-cell Activation:** T-helper cells stimulate B cells to differentiate into plasma cells, which secrete antibodies. This results in the production of both **systemic IgG** and **mucosal IgA** antibodies. The presence of IgA at mucosal surfaces is crucial for neutralizing pathogens before they invade host tissues.
- b) **Cytotoxic T-cell Response:** Antigens processed via the MHC-I pathway can also activate **CD8+ cytotoxic T lymphocytes (CTLs)**, which destroy infected cells, enhancing protection against intracellular pathogens such as viruses.
- c) **Memory Cell Formation:** Both B and T cells generate memory cells, ensuring long-term immunity and a faster, stronger response upon re-exposure to the pathogen.

2.4 Role of Mucosal Immunity

One of the most significant advantages of edible vaccines is the induction of **mucosal immunity**. Secretory IgA (sIgA), produced at mucosal sites, acts as the first line of defense by preventing the adhesion and colonization of pathogens on epithelial surfaces. Since mucosal surfaces are the primary entry point for many infectious agents (e.g., cholera, rotavirus, influenza), edible vaccines have the potential to block infection at its earliest stage (Kiyono & Fukuyama, 2004).


2.5 Use of Adjuvants and Fusion Proteins

To enhance immunogenicity, edible vaccines can be engineered to express antigens fused with **mucosal adjuvants** such as cholera toxin B subunit (CTB) or heat-labile enterotoxin B (LTB) from *Escherichia coli*. These molecules facilitate uptake by intestinal cells and boost immune responses (Lindblad, 2004).

2.6 Oral Tolerance Consideration

A major challenge in the mechanism is the possibility of **oral tolerance**, where repeated exposure to an antigen via the gut induces immune unresponsiveness instead of immunity. To overcome this, strategies such as controlled dosing, booster doses, or inclusion of adjuvants are being investigated (Kang et al., 2012).

Mechanism of Action

3. PRODUCTION STRATEGIES FOR EDIBLE VACCINES

The success of edible vaccines largely depends on the efficiency, scalability, and safety of the production systems used to express antigenic proteins. Various strategies have been developed over the past three decades to utilize plants and animals as bioreactors for vaccine production. These strategies can be broadly divided into **plant-based systems** and **animal-based systems**, each offering distinct advantages and challenges.

3.1 Plant-Based Systems

3.1.1 Choice of Plant Hosts

Edible vaccines were first demonstrated in tobacco, which served as a model plant due to its ease of transformation and high biomass yield. However, since tobacco is not edible, subsequent research shifted to food crops such as potatoes, tomatoes, bananas, rice, maize, lettuce, and carrots (Streatfield, 2005). The choice of host depends on factors such as:

- **Consumption habits:** Bananas and tomatoes are eaten raw, making them suitable for oral vaccine delivery.
- **Storage stability:** Rice and maize are dry grains that allow long-term storage without refrigeration.
- **Cultural acceptance:** Host plants must be culturally acceptable in target populations to ensure adoption.

3.1.2. Genetic Engineering Approaches

Edible vaccine development in plants relies on introducing pathogen-derived genes into the plant genome. Common methods include:

- **Agrobacterium-mediated transformation:** A widely used method where *Agrobacterium tumefaciens* transfers foreign DNA into plant cells.
- **Biostatic particle delivery (gene gun):** DNA-coated metal particles are shot into plant tissues, integrating the gene into the host genome.
- **Chloroplast transformation:** Genes are inserted into chloroplast DNA rather than nuclear DNA. This allows higher expression levels and maternal inheritance, reducing the risk of transgene spread via pollen (Daniell et al., 2001).

3.1.3. Expression of Antigens

Pathogen-derived genes typically encode surface proteins or toxin subunits, such as the hepatitis B surface antigen (HBsAg), cholera toxin B subunit (CTB), or rotavirus VP6 protein. These antigens are expressed in edible plant parts such as tubers, fruits, leaves, or seeds. Stable expression is critical to ensure consistent antigen levels across different harvests.

3.1.4. Advantages of Plant Systems

- Cost-effective and scalable production.
- Elimination of expensive fermentation facilities.
- Reduced risk of contamination with animal pathogens.
- Ability to induce mucosal immunity due to oral consumption.

3.1.5. Challenges of Plant Systems

- Variation in antigen content between plants and tissues.
- Loss of antigen activity during cooking or storage.
- Regulatory concerns over genetically modified organisms (GMOs).
- Need for controlled dosing and quality assurance.

3.2 Animal-Based Systems

While plants dominate edible vaccine research, animal systems have also been explored, particularly for producing complex proteins requiring post-translational modifications.

3.2.1. Transgenic Milk Systems

Animals such as cows, goats, and sheep have been genetically engineered to secrete recombinant proteins in their milk. For example, goats have been developed to produce antigens of *Staphylococcus aureus* in milk, which can be consumed as a vaccine source (Kumar et al., 2012).

Advantages:

- High protein yield per liter of milk.
- Ability to produce complex proteins with correct folding and glycosylation.
- Continuous production over lactation periods.

Limitations:

- Ethical concerns over animal genetic modification.
- More expensive than plant-based production.
- Risk of zoonotic pathogen contamination.

3.2.2. Transgenic Egg Systems

Chickens have been engineered to produce antigens in egg whites. Since chickens produce large numbers of eggs, this system can yield substantial amounts of antigen quickly (Lillico et al., 2005).

Advantages:

- High protein yield from a single hen.

- Ease of antigen extraction from egg whites.

Challenges:

- Not directly edible without processing, since heating can denature proteins.
- Requires purification for effective use.

3.3 Molecular Farming and Hybrid Strategies

Recent strategies combine plant and animal systems with advanced molecular biology tools to optimize antigen yield and stability. For example:

- **Fusion proteins** are designed by linking antigens to mucosal adjuvants (e.g., CTB, LTB), enhancing immunogenicity when consumed.
- **Edible plant capsules** are being developed, where plant tissues encapsulate antigens to protect them from gastric degradation.
- **Transient expression systems**, using viral vectors (e.g., tobacco mosaic virus), allow rapid and high-level antigen production in plants within weeks (Rybicki, 2010).

3.4 Regulatory and Biosafety Considerations

Both plant- and animal-based strategies face regulatory hurdles. Authorities must ensure:

- The vaccine is safe for consumption.
- Antigen expression levels are consistent across batches.
- There is no unintended spread of transgenes into the environment.
- Proper labeling and consumer acceptance of GMO-derived vaccines.

Biosafety protocols, such as contained cultivation and maternal inheritance strategies, are being developed to address these concerns. Production strategies for edible vaccines have diversified over time, ranging from stable integration in plant genomes to transgenic animal systems. While plant-based platforms dominate due to their cost-effectiveness and scalability, animal systems offer advantages in producing complex proteins. Emerging technologies such as chloroplast engineering, viral vector-based expression, and CRISPR-Cas9 genome editing are refining production methods, improving antigen yield, and addressing challenges of stability and regulation. As these strategies evolve, they bring edible vaccines closer to clinical and commercial viability.

4. APPLICATIONS OF EDIBLE VACCINES

Edible vaccines have broad potential in human healthcare and veterinary medicine. Their unique ability to stimulate both mucosal and systemic immunity makes them suitable for preventing infectious diseases that enter through mucosal routes. Additionally, their cost-effectiveness and ease of administration expand their applications to resource-limited settings.

4.1. Human Infectious Diseases

Hepatitis B

One of the earliest edible vaccine successes involved the expression of the **hepatitis B surface antigen (HBsAg)** in potatoes and lettuce. Clinical trials showed that consumption of these transgenic plants triggered detectable antibody responses in humans (Thanavala et al., 2005). This demonstrated proof of principle that edible vaccines could be both safe and immunogenic in humans.

Cholera and Diarrheal Diseases

Rice-based oral vaccines expressing the **cholera toxin B subunit (CTB)** have been tested successfully in mice and advanced to human trials. The vaccine was found to induce strong mucosal IgA and systemic IgG responses, providing protection against *Vibrio cholerae* (Tokuhara et al., 2013).

Rabies

Tomatoes and spinach expressing rabies virus glycoprotein have shown promising results in preclinical studies. Rabies continues to be a major zoonotic disease, particularly in Asia and Africa, where access to vaccines is limited. An edible rabies vaccine could provide affordable protection to high-risk populations (Yusibov et al., 2002).

Rotavirus and Norovirus

Rotavirus is a major cause of infant mortality due to diarrhea. Edible vaccines expressing rotavirus VP6 protein in transgenic potatoes demonstrated protective immunity in animal models (Mason et al., 2002). Similarly, plant-based norovirus vaccines are being explored to address outbreaks in closed environments such as cruise ships and schools.

COVID-19

The COVID-19 pandemic highlighted the need for rapid, scalable vaccine production. Plant-based edible vaccines expressing **SARS-CoV-2 spike protein** are under development, aiming to complement conventional injectable vaccines (Rybicki, 2020). If successful, these could provide booster doses in the form of edible crops.

4.2. Veterinary Applications

Edible vaccines are also being developed for animal health, offering affordable and large-scale immunization options for livestock and poultry.

- **Foot-and-Mouth Disease (FMD):** Edible vaccines expressed in alfalfa and clover are being studied for FMD prevention in cattle.
- **Newcastle Disease:** Transgenic maize expressing Newcastle disease virus (NDV) antigens has been tested in poultry, showing immune protection without the need for injections (Meloen et al., 1998).
- **Rabies in Wildlife:** Bait containing edible rabies vaccines could immunize wild animals such as raccoons, foxes, and stray dogs, reducing transmission to humans.

4.3. Non-Communicable Diseases and Other Uses

Although infectious disease prevention remains the primary focus, edible vaccines are also being explored for:

- **Allergy therapy:** Edible vaccines designed to desensitize patients to allergens.
- **Cancer immunotherapy:** Plant-based vaccines expressing tumor-associated antigens are under early investigation.
- **Contraceptive vaccines:** Research on edible vaccines targeting reproductive hormones for non-surgical population control of stray animals.

Applications of edible vaccines extend from common infectious diseases like hepatitis B and cholera to global health threats such as rabies and COVID-19. They also hold promise in veterinary medicine and novel areas like cancer and allergy treatment. By addressing diseases in both humans and animals, edible vaccines could play a transformative role in advancing **One Health** approaches, linking human, animal, and environmental health.

5. FUTURE PERSPECTIVES

The next decade promises to be a transformative era for edible vaccines as they progress from experimental laboratories to real-world healthcare solutions. Current research trajectories and technological innovations suggest that edible vaccines are poised to become mainstream immunization tools, particularly in regions where cold-chain logistics, cost, and accessibility remain major barriers to traditional injectable vaccines. These advancements align with the global health agenda of universal immunization and equitable healthcare delivery (Kumar et al., 2021).

One of the most significant drivers of edible vaccine development will be their compatibility with **precision agriculture** and **vertical farming**. Controlled agricultural systems offer the possibility of cultivating genetically engineered plants with predictable yields, optimized growth conditions, and enhanced biosafety. Vertical farms and hydroponic systems can be strategically located near healthcare centers or urban populations, ensuring reliable, high-yield production that reduces dependency on centralized manufacturing facilities (Rukavtsova et al., 2022). This decentralized model of vaccine production could fundamentally shift the way public health systems manage immunization, making vaccines more locally available while minimizing distribution bottlenecks.

Alongside production innovations, **digital traceability tools** are expected to play a vital role in the adoption and regulation of edible vaccines. The integration of **blockchain-based supply chain management systems** would allow each batch of vaccine-containing crops to be tracked from cultivation to patient administration. Such transparency not only ensures biosafety and compliance with stringent regulatory standards but also addresses one of the biggest public concerns regarding genetically modified organisms (GMOs)—trust in authenticity and safety (Kamle et al., 2022). Digital traceability could also facilitate real-time monitoring during outbreaks or pandemics, enabling rapid scaling up of production while maintaining quality assurance.

While infectious diseases remain the primary focus of edible vaccine research, the field is expanding into novel therapeutic domains. **Cancer immunotherapy** represents one such frontier, where edible vaccines could be designed to stimulate targeted immune responses against tumor-specific antigens. This approach offers the potential for cost-effective cancer prevention strategies in high-risk populations and supportive therapies for existing patients (Khandelwal et al., 2023). Similarly, edible vaccines hold promise in **allergy desensitization** by delivering controlled doses of allergenic proteins in a safe, gradual manner that retrains the immune system. Research is also exploring their application in **metabolic disorders**, such as diabetes, by modulating immune pathways involved in disease

progression (Shanmugaraj et al., 2020). These broader therapeutic horizons highlight that edible vaccines are not limited to infectious disease control but could also redefine how society manages chronic and lifestyle-related health conditions.

Future perspectives also highlight the importance of **multisectoral partnerships**. Collaboration between public health agencies, biotechnology firms, agricultural enterprises, and regulatory authorities will be essential for scaling up edible vaccine technologies. Such partnerships can accelerate clinical trials, streamline approval processes, and ensure public engagement in shaping policy frameworks. Non-governmental organizations and global health initiatives, such as Gavi, the Vaccine Alliance, and the World Health Organization (WHO), are expected to play pivotal roles in supporting equitable access to these novel vaccines in low- and middle-income countries (World Health Organization, 2022).

Another critical future direction involves **pandemic preparedness and zoonotic disease control**. The COVID-19 pandemic exposed the limitations of centralized vaccine production and cold-chain distribution, particularly in resource-limited regions. Edible vaccines could offer a rapid-response platform in future pandemics, where plant-based systems can be engineered to express immunogenic proteins within weeks (Shanmugaraj et al., 2020). Moreover, given their ability to stimulate mucosal immunity, edible vaccines may be especially valuable against respiratory and gastrointestinal pathogens that enter through mucosal surfaces. Their role in **controlling emerging zoonoses**, such as avian influenza or Nipah virus, could be equally transformative, preventing spillover events before they escalate into global health crises (Kumar et al., 2021).

Public perception and acceptance will be another determining factor for the success of edible vaccines. The debate surrounding GMOs has historically been contentious, with concerns about environmental safety, unintended health effects, and corporate control over seeds. To overcome these challenges, **public education campaigns** and transparent communication about safety testing, regulatory oversight, and long-term monitoring will be crucial (Kamle et al., 2022). Building trust through open dialogue and inclusive policymaking could ensure widespread adoption and acceptance.

If these trends persist, edible vaccines may become an essential component of **global health equity**, complementing injectable vaccines while providing rapid, low-cost, and thermally stable alternatives. Their capacity to bypass cold-chain logistics, eliminate the need for trained healthcare professionals for administration, and stimulate both systemic and mucosal immunity positions them as a disruptive innovation in the fight against infectious and chronic diseases alike.

6. CONCLUSION

Edible vaccines represent one of the most promising intersections of biotechnology, agriculture, and medicine. By providing a **needle-free, low-cost, and thermally stable immunization strategy**, they address some of the most persistent barriers to vaccine accessibility, particularly in low-resource settings. Unlike conventional vaccines, which often require complex manufacturing, refrigeration, and trained personnel for delivery, edible vaccines can be integrated into food systems, making them inherently more user-friendly and scalable. Furthermore, by stimulating both systemic and mucosal immunity, they offer dual protection that may surpass traditional approaches in certain contexts (Rukavtsova et al., 2022).

The progress achieved thus far underscores the immense potential of edible vaccines but also highlights the **regulatory, technical, and societal challenges** that remain. On the regulatory front, edible vaccines must navigate complex frameworks governing GMOs, food safety, and pharmaceuticals. Clear guidelines that differentiate edible vaccines from conventional GM crops are urgently needed to ensure consistent approval pathways across countries (Kamle et al., 2022). From a technical perspective, challenges such as dosage standardization, antigen stability, and uniform expression levels in plants must be resolved to ensure safety and efficacy. Research in **bioencapsulation techniques**, such as encapsulating antigens within plant cell walls or nanoparticles, is already addressing these concerns, enabling controlled release and protection from degradation during digestion (Shanmugaraj et al., 2020).

Societal acceptance represents another crucial hurdle. While the promise of edible vaccines is immense, skepticism toward genetically engineered foods persists in many regions. Bridging this gap requires transparent risk-benefit communication, inclusive policymaking, and collaboration with community leaders and local stakeholders. Importantly, integrating edible vaccines into existing immunization programs must be done without undermining trust in traditional vaccines, especially in an era where vaccine hesitancy remains a global challenge (World Health Organization, 2022).

Despite these obstacles, advances in **genetic engineering tools** such as CRISPR-Cas9, along with improvements in plant biotechnology and molecular farming, are steadily overcoming technical barriers. The establishment of controlled agricultural environments, including vertical farming and precision cultivation, is reducing biosafety concerns while ensuring reproducibility. Simultaneously, digital traceability and blockchain integration offer novel ways to build public trust, ensure regulatory compliance, and strengthen supply chain resilience (Khandelwal et al., 2023).

Ultimately, edible vaccines should not be viewed as a replacement for conventional vaccines but as a **complementary strategy**. In situations where injectable vaccines are impractical—whether due to logistical, economic, or social constraints—edible vaccines can serve as an innovative alternative. Their adaptability for pandemic response, potential for chronic disease management, and capacity to contribute to health equity in underserved regions mark them as a transformative tool in global health.

As research advances and policy frameworks evolve, the vision of edible vaccines achieving mainstream acceptance is becoming increasingly realistic. With **sustained scientific innovation, collaborative partnerships, and proactive public engagement**, edible vaccines are poised to transition from experimental prototypes to practical healthcare solutions. In doing so, they may not only redefine the future of immunization but also set a precedent for how biotechnology can be harnessed to address some of humanity's most pressing health challenges.

7. REFERENCES

- [1] Arntzen, C. J. (1997). High-tech herbal medicine: Plant-based vaccines. *Nature Medicine*, 3(11), 1127–1129. <https://doi.org/10.1038/nm1197-1127>
- [2] Curtiss, R., & Cardineau, C. A. (1990). Oral immunization by transgenic plants. *Bio/Technology*, 8(6), 673–676. <https://doi.org/10.1038/nbt0690-673>
- [3] Daniell, H., Khan, M. S., & Allison, L. (2001). Milestones in chloroplast genetic engineering: An environmentally friendly era in biotechnology. *Trends in Plant Science*, 6(6), 245–252. [https://doi.org/10.1016/S1360-1385\(01\)01944-2](https://doi.org/10.1016/S1360-1385(01)01944-2)
- [4] Kamle, M., Borah, R., Bora, H., Jaiswal, A. K., Ramakrishna, W., & Kumar, P. (2022). Edible vaccines: Current perspectives and future directions. *Frontiers in Plant Science*, 13, 951212. <https://doi.org/10.3389/fpls.2022.951212>
- [5] Kang, S. M., Compans, R. W., & Kang, H. J. (2012). Oral tolerance and mucosal immunity: Clinical implications. *Immune Network*, 12(5), 191–200. <https://doi.org/10.4110/in.2012.12.5.191>
- [6] Khandelwal, A., Dhapola, R., Verma, H., & Yadav, P. (2023). Plant-based vaccines: Advances, challenges and prospects for cancer immunotherapy. *Biotechnology Advances*, 61, 108065. <https://doi.org/10.1016/j.biotechadv.2022.108065>
- [7] Kiyono, H., & Fukuyama, S. (2004). NALT- versus Peyer's-patch-mediated mucosal immunity. *Nature Reviews Immunology*, 4(9), 699–710. <https://doi.org/10.1038/nri1439>
- [8] Kumar, G. B. S., Ganapathi, T. R., Revathi, C. J., Srinivas, L., & Bapat, V. A. (2012). Expression of hepatitis B surface antigen in transgenic banana plants. *Plant Cell Reports*, 21(8), 671–677. <https://doi.org/10.1007/s00299-002-0534-0>
- [9] Kumar, S., Daniell, H., & Singh, N. D. (2021). Plant-based edible vaccines and their role in combating infectious diseases. *Biotechnology Journal*, 16(10), 2100140. <https://doi.org/10.1002/biot.202100140>
- [10] Lillico, S. G., Sherman, A., McGrew, M. J., Robertson, C. D., Smith, J., Haslam, C., Barnard, P., Radcliffe, P. A., Mitrophanous, K. A., Elliot, E. A., Sang, H., & Clark, A. J. (2005). Oviduct-specific expression of two therapeutic proteins in transgenic hens. *Proceedings of the National Academy of Sciences*, 102(45), 17679–17684. <https://doi.org/10.1073/pnas.0508582102>
- [11] Lindblad, E. B. (2004). Mucosal adjuvants: Cholera toxin and *E. coli* heat-labile enterotoxin. *Vaccine*, 22(7), 833–838. <https://doi.org/10.1016/j.vaccine.2003.11.021>
- [12] Mason, H. S., Lam, D. M. K., & Arntzen, C. J. (1992). Expression of hepatitis B surface antigen in transgenic plants. *Proceedings of the National Academy of Sciences*, 89(24), 11745–11749. <https://doi.org/10.1073/pnas.89.24.11745>
- [13] Mason, H. S., Ball, J. M., Shi, J. J., Jiang, X., Estes, M. K., & Arntzen, C. J. (2002). Expression of Norwalk virus capsid protein in transgenic tobacco and potato and its oral immunogenicity in mice. *Proceedings of the National Academy of Sciences*, 93(11), 5335–5340. <https://doi.org/10.1073/pnas.93.11.5335>

[14] Neutra, M. R., Kozlowski, P. A., & Mestecky, J. (2001). Mucosal vaccines: The promise and the challenge. *Nature Reviews Immunology*, 1(2), 115–128. <https://doi.org/10.1038/35100526>

[15] Plotkin, S. A. (2014). History of vaccination. *Proceedings of the National Academy of Sciences*, 111(34), 12283–12287. <https://doi.org/10.1073/pnas.1400472111>

[16] Rukavtsova, E. B., Gmyl, A. P., & Ivanov, P. A. (2022). Edible vaccines: Prospects for plant-based production. *Applied Biochemistry and Microbiology*, 58(6), 637–648. <https://doi.org/10.1134/S0003683822060131>

[17] Rybicki, E. P. (2010). Plant-made vaccines for humans and animals. *Plant Biotechnology Journal*, 8(5), 620–637. <https://doi.org/10.1111/j.1467-7652.2010.00507.x>

[18] Rybicki, E. P. (2020). Plant molecular farming of SARS-CoV-2 vaccines and biologics. *Current Opinion in Biotechnology*, 61, 1–8. <https://doi.org/10.1016/j.copbio.2019.10.006>

[19] Simonsen, L., Kane, A., Lloyd, J., Zaffran, M., & Kane, M. (1999). Unsafe injections in the developing world and transmission of bloodborne pathogens: A review. *Bulletin of the World Health Organization*, 77(10), 789–800.

[20] Streatfield, S. J. (2005). Plant-based vaccines for animal health. *Revue Scientifique et Technique (OIE)*, 24(1), 189–199. <https://doi.org/10.20506/rst.24.1.1550>

[21] Thanavala, Y., Mahoney, M., Pal, S., Scott, A., Richter, L., Natarajan, N., Goodwin, P., Arntzen, C. J., & Mason, H. S. (2005). Immunogenicity of transgenic plant-derived hepatitis B surface antigen in humans. *Nature Medicine*, 11(6), 585–592. <https://doi.org/10.1038/nm1053>

[22] Tokuhara, D., Yuki, Y., Nochi, T., Kodama, T., Mejima, M., Kurokawa, S., Takahashi, Y., Nakanishi, U., Ono, F., Ohmura, M., & Kiyono, H. (2013). Secretory IgA-mediated protection against *V. cholerae* and heat-labile enterotoxin-producing enterotoxigenic *E. coli* by rice-based vaccine. *Proceedings of the National Academy of Sciences*, 110(23), 8794–8799. <https://doi.org/10.1073/pnas.1303978110>

[23] Walmsley, A. M., & Arntzen, C. J. (2000). Plant cell factories and mucosal vaccines. *Current Opinion in Biotechnology*, 11(2), 126–129. [https://doi.org/10.1016/S0958-1669\(00\)00067-0](https://doi.org/10.1016/S0958-1669(00)00067-0)

[24] World Health Organization. (2022). Global vaccine market report 2022. Geneva: WHO. <https://www.who.int/publications/item/9789240066037>

[25] Yusibov, V., Hooper, D. C., Spitsin, S. V., Fleysh, N., Kean, R. B., Mikheeva, T., Deka, D., Karasev, A., Cox, S., Randall, J., Koprowski, H., & Koprowski, H. (2002). Expression in plants and immunogenicity of plant virus-based experimental rabies vaccine. *Vaccine*, 20(27–28), 3155–3164. [https://doi.org/10.1016/S0264-410X\(02\)00255-2](https://doi.org/10.1016/S0264-410X(02)00255-2)