e-1SSN :
&(m INTERNATIONAL JOURNAL OF PROGRESSIVE 2583-1062
[JPREMS RESEARCH IN ENGINEERING MANAGEMENT
| = N— |

AND SCIENCE (IJPREMS) Impact
i Factor :
WWW.ljprems.com Vol. 03, Issue 04, April 2023, pp : 28-34 5725

editor@ijprems.com

EFFICIENCY AND EFFECTIVENESS OF WEB APPLICATION
VULNERABILITY DETECTION

S. Hari Prasad !, Dr. V. Sai Shanmuga Raja?, Dr. S. Geetha®

M. Tech - CFIS, Department of Computer science and Engineering, Dr.M.G.R Educational and Research Institute,
Chennai 600 089, Tamilnadu, India.
“Professor, Department of Computer science and Engineering, Dr.M.G.R Educational and Research Institute, Chennai
600 089, Tamilnadu, India.
*Head of Department, Department of Computer science and Engineering, Dr.M.G.R Educational and Research
Institute, Chennai 600 089, Tamilnadu, India.

ABSTRACT

Malicious users can attack Web applications by exploiting injection vulnerabilities in the source code. This work
addresses the challenge of detecting injection vulnerabilities in the server-side code of Java Web applications in a
scalable and effective way. We propose an integrated approach that seamlessly combines security slicing with hybrid
constraint solving; the latter orchestrates extract minimal program slices relevant to security from Web programs and
to generate attack conditions. We then apply hybrid constraint solving to determine the satisfiability of attack
conditionsand thus detect vulnerabilities. The experimental results, using a benchmark comprising a set of diverse and
representative Web applications/services as well as security benchmark applications, show that our approach is
significantly more effective at detecting injection vulnerabilities than state-of-the-art approaches, achieving 98%
recall, without producing any false alarm. We also compared the constraint solving module of our approach with state-
of-the-art constraint solvers, using six different benchmark suites; our approach correctly solved the highest number
of constraints (665 out of 672), without producing any incorrect result, and was the one with the least number of time-
out/failing cases. In both scenarios, the execution time was practically acceptable, given the offline nature of
vulnerability detection.

1. INTRODUCTION

Symbolic execution and constraint solving represent a state-of-the-art approach usedin security analysis to identify
vulnerabilities in software systems. Symbolic execution executes a program with symbolic inputs and at the end
generates a set of path conditions. Each of them corresponds to a constraint imposed on the symbolic inputs to follow
a certain program path, i.e., a constraint characterizing a possible execution. By solving these constraints with a
constraint solver, one can determine which concrete inputs can cause a certain program path to be executed. In the
context of security analysis this approach is used to detect injection vulnerabilities, i.e.,program locations in which
certain malicious inputs can alter the intended program behaviour. Roughly speaking, this approach consists of
solving the constraints obtained by conjoining the path conditions (generated by the symbolic execution) with attack
specifications provided by security experts. The main strength of this approach is that vulnerability detection yields a
limited number of false positives, since the concrete inputs determined with constraint solving prove the existence of
vulnerabilities.

However, the effectiveness and precision of this approach are challenged by two main problems that affect symbolic
execution and constraint solving 1) path explosion and 2) solving complex constraints (e.g., constraints involving
regular expressions or containing string/mixed or integer operations). Notice that while these problems are
independent from the context in which symbolic execution and constraint solving are applied, the solutions to mitigate
them can be tailored for a specific context. Nevertheless, existing proposals in the context of vulnerability analysis
have not fully addressed these problems. The path explosion problem is triggered by the huge number of feasible
program paths that symbolic execution has to explore in large programs. To mitigate this problem in the
context of vulnerability analysis, in previous work we proposed an approach to extracting security slices from Java
programs. A security slice contains a concise and minimal sequence of program statements that affect a given security
sensitive program location (sink), such as an SQL query statement. Symbolic analysis can then be performed on
security slices instead of the whole program; in this way path conditions are analyzed only with respect to the paths
leading to sinks instead of every path in the program. Since, according to our experience, the number of sinks ina
program is lowl and security slices are much smaller (approx. 1%) than the programcontaining them, this approach
can effectively mitigate the path explosion problem.

The path explosion problem is triggered by the huge number of feasible programpaths that symbolic execution has
to explore in large programs. To mitigate this problem in the context of vulnerability analysis, in previous work

@International Journal Of Progressive Research In Engineering Management And Science Page | 28

e-1SSN :
&(m INTERNATIONAL JOURNAL OF PROGRESSIVE 2583-1062
[JPREMS RESEARCH IN ENGINEERING MANAGEMENT
| = N— |

AND SCIENCE (IJPREMS) Impact
i Factor :
WWW.ljprems.com Vol. 03, Issue 04, April 2023, pp : 28-34 5725

editor@ijprems.com

we proposed an approach to extracting security slices from Java programs. A security slice contains a concise and
minimal sequence of program statements that affect a given security sensitive program location (sink), such as an SQL
query statement. Symbolic analysis can then be performed on security slices instead of the whole program; in this way
path conditions are analyzed only with respect to the paths leading to sinks instead of every path in the program.
Since, according to our experience, the number of sinks ina program is lowl and security slices are much smaller
(approx. 1%) than the programcontaining them, this approach can effectively mitigate the path explosion problem.
Literature Survey

Ajjarapu Kusuma Priyanka et.al., web application security has become a major challenge due to the common
vulnerabilities found in web applications. Attackers possess a never-ending list of vulnerabilities and payloads to
exploit them in order to gain access over various web applications maliciously. Each time when there are any changes
made at some layer of web-application architecture, there exists a chance of creating novel vulnerabilities. In this
paper, we brief out our analysis on common and familiar vulnerabilities like Sqgl Injection, Cross site Scripting and
Cross site Request Forgery (CSRF) and demonstrate the exploitation of these vulnerabilities by considering DVWA, a
highly vulnerable web application designed for education purpose. We carry out exploitation both manually and
through automated tools. We conclude our research by inferring some preventive mechanisms to be adopted while
designing the web applications to mitigate such types of attacks.

Bogdan Korniyenko et.al., developed web application protection system by using modern technologies NET
Framework, ASP. NET Core, EF, SSMS, Swagger. The system is resistant to changes and outside interference, able to
prevent unauthorized access. The main types of vulnerabilities in web applications are considered. The most popular
ready-made services for the implementation of the appropriate protection are described. The white list model of
developing secure web applications and the main steps of the model implementation is defined. Implement a white list
model for a web application by using a system of roles and access. The server part of the web application has been
developed, which includes the built-in functionality of the basic methods of hacking prevention. Impact of SQL
injection through project architecture is not possible. A method for accessing private user information has been
developed by using the Rijndael encryption algorithm.

Rizki Agung Muzaki et.al., the use of web applications has been undergoing rapid increase. Many individuals,
groups, organizations or governments use web applications as a means to exchange information or support business-
related tasks. Despite the increased adoption, web applications use is however directly associated with comparable
threats and attacks. With the increasing threats and attacks on web applications, organizations require a more effective
concept of web application security. Web Application Firewall (WAF) is a security concept that can be used to
prevent various threats and attacks on web applications. WAF has the ability to filter packets, block dangerous HTTP
requests, and also do logging. This paper demonstrates and proposes the implementation of WAF on a web-based
application using Mod Security and the Reverse Proxy method. From the tests carried out e.g. cross-site scripting,
SQL injection and unauthorized vulnerability web scanning, all threats were successfully thwarted by Mod Security
and reverse proxy method implemented in the WAF.

Jeom-Goo Kim et.al., the expansion of the Internet has made web applications become a part of everyday life. As a
result, the numbers of incidents which exploit web application vulnerabilities are increasing. A large percentage of
these incidents are SQL Injection attacks which are a serious security threat to databases with potentially sensitive
information. Therefore, much research has been done to detect and prevent these attacks and it resulted in a decline of
SQL Injection attacks. However, there are still methods to bypass them and these methods are too complex to
implement in real web applications. This paper proposes a simple and effective SQL Query removal method which
uses Combined Static and Dynamic Analysis and evaluates the efficiency through various experiments.

Giovanni Agosta et.al., the automatic identification of security vulnerabilities is a critical issue in the development of
web-based applications. We present a methodology and tool for vulnerability identification based on symbolic code
execution exploiting Static Taint Analysis to improve the efficiency of the analysis. The tool targets PHP web
applications, and demonstrates the effectiveness of our approach in identifying cross-site scripting and SQL injection
vulnerabilities on both NIST synthetic benchmarks and real-world applications. It proves to be faster and more
effective than its main competitors, both open source and commercial.

3. PROBLEM STATEMENT

The vulnerable user inputs within the web page or web application. A web page or web application that has
SQL Injection vulnerability uses such user input directly in an SQL query. The attacker can create input
content. The unauthorized viewing of user lists, the deletion of entire tables and, in certain cases the
attacker gaining administrative rights to a database, all of which are high detrimental to a business.

@International Journal Of Progressive Research In Engineering Management And Science Page | 29

e-1SSN :
&(m INTERNATIONAL JOURNAL OF PROGRESSIVE 2583-1062
[JPREMS RESEARCH IN ENGINEERING MANAGEMENT
| = N— |

AND SCIENCE (IJPREMS) Impact
i Factor :
WWW.ljprems.com Vol. 03, Issue 04, April 2023, pp : 28-34 5725

editor@ijprems.com

4. PROPOSED SYSTEM

We proposed a fallback mechanism to extend existing string constraint solvers for dealing with constraints with
unsupported string operations. This mechanism, implemented in the ACO-Solver tool, used an off-the-shelf automata-
based string constraint solver combined with a search-driven constraint solving procedure basedon the Ant Colony
Optimization meta-heuristic. The goal of the work presented in thispaper is to provide a scalable approach, based on
symbolic execution and constraint solving, to effectively find injection vulnerabilities in source code, which generates
noor few false alarms, minimizes false negatives, and overcomes the path explosion problem and the one of solving
complex constraints.

5. METHODOLOGY
Motivation

The challenges in adopting an approach based on symbolic execution and constraint solving in the context of
vulnerability detection. Although we crafted this example for illustrative purposes, it can be considered realistic
sinceit contains typical operations that are commonly found in modern Web applications. Moreover, it contains
vulnerabilities that embody the patterns tracked in the CWE dictionary. The codes at vulnerable to XSS because
of the inadequate sanitization procedure applied to variable sid, which contains a user input the codes at line
is vulnerable to XPathi because the variable sid, containing a user input, is not sanitized properly
before using it in the XPathquery. Indeed, the standard sanitization procedure from OWASP [10] applied to
variable sid only escapes meta-characters.

Existing Challenges

The path explosion problem is triggered by the huge number of feasible program paths that symbolic execution has to
explore in large programs. To mitigate this problem in the context of vulnerability analysis, in previous work we
proposed an approach to extracting security slices from Java programs. A security slice contains a concise and
minimal sequence of program statements that affect a given security sensitive program location (sink), such as an SQL
query statement.

Architecture

| REGISTER AND n
A I]
OWNERUSERS -~
UPLOAD) SEARCH—
W (€ bsite has | e
{Every website has ——
BLOCKED il ; ~—
WEBSITES ts own attack ~
USERS conditions based
\ on the website's
needand
development]

Figure 1. Architecture
Modules
User
e Regqister
e Login
e Search
e View the website
e Make right click in website

@International Journal Of Progressive Research In Engineering Management And Science Page | 30

e-1SSN :
&(m INTERNATIONAL JOURNAL OF PROGRESSIVE 2583-1062
[JPREMS RESEARCH IN ENGINEERING MANAGEMENT
| = N— |

AND SCIENCE (IJPREMS) Impact
i Factor :
WWW.ljprems.com Vol. 03, Issue 04, April 2023, pp : 28-34 5725
editor@ijprems.com
Admin
e Login

Approve the web site
e Block unwanted website
e View user details

Owner
e Register
e Login

e Register Web site

e Upload and ready to host Website

e View blocked user account

Register

Register Your Account. A check register, also called a cash disbursements journal, is the journal used to record all of
the checks, cash payments, and outlays of cash during an accounting period.

Login

A login is a set of credentials used to authenticate a user. Most often, these consist of a username and password.

However, a login may include other information, such as a PIN number, password, or passphrase. Some logins require
a biometric identifier, such as a fingerprint or retina scans.

Search

A web search engine or Internet search engine is a software system that is designed to carry out web search (Internet
search), which means to search the World Wide Web in a systematic way for particular information specified in a
textual web search query

View the website

In this module, user can view the website which is uploaded by website owner.

Make right click in website

In this module, if user tries to make right click for get a source code that account will blocked automatically.

Admin

Login

A login is a set of credentials used to authenticate a user. Most often, these consist of a username and password.

However, a login may include other information, such as a PIN number, password, or passphrase. Some logins require
a biometric identifier, such as a fingerprint or retina scans.

Approve the web site

This module, the administrator ready to confirm the site and if the site is authenticable administrator will favor to
dynamic the site

Block unwanted website

On the Internet, a block or ban is a technical measure intended to restrict access to information or resources. Blocking
and its inverse, unblocking, may be implemented by the owners of computers using software. Privileged users can
apply blocks that affect the access of the undesirables to the entire website.

Owner

Register

Register Your Account. A check register, also called a cash disbursements journal, is the journal used to record all of
the checks, cash payments, and outlays of cash during an accounting period.

Login

A login is a set of credentials used to authenticate a user. Most often, these consist of a username and password.

However, a login may include other information, such as a PIN number, pass code, or passphrase. Some logins require
a biometric identifier, such as a fingerprint or retina scans.

Register Web site

Web site registration is the process of registering a Web site name, which identifies one or more IP addresses with a
name that is easier to remember and use in URLs to identify particular Web pages. The person or business that
registers Web site name is called the Web site name registrant.

@International Journal Of Progressive Research In Engineering Management And Science Page | 31

e-1SSN :
&(m INTERNATIONAL JOURNAL OF PROGRESSIVE 2583-1062
[JPREMS RESEARCH IN ENGINEERING MANAGEMENT
| = N— |

AND SCIENCE (IJPREMS) Impact
i Factor :
WWW.ljprems.com Vol. 03, Issue 04, April 2023, pp : 28-34 5725

editor@ijprems.com

Upload and ready to host Website

The owner can allow posting their web site after them web site getting approval from the admin. and the website
visible to all the users.

View blocked user account
In this module, owner can view the blocked account.
Implementation

The security slicer first extracts a securityslice for each sink. It then explores the paths in the slice that lead to
the sink in a depth-first manner, extracting the path conditions and the context information. The latter is used to
generate the attack &ondition, by conjoining the path condition with the appropriate threat model. For scalability
reasons, when encountering loops and recursive function calls, the slices iterate through them only once. The
constraint solver comprises three modules: constraint preprocessor, an automata-based and interval constraintsolver
and a search-based constraint solver. The constraint preprocessor makes use of the J GraphT library aJava class
library that provides mathematical graph-theoryobjects and algorithms, in order to generate a constraint network from
the attack condition. The constraint network is then passed to the constraint solver to prove the presence/absence of
vulnerability. Our automata-based and interval constraint solver handles string and integer constraints with
supported operations, as described in. It is built on top of JSA and Sushi. JSA models a set of Java string/mixed
operations using finite state automata; Sushi adds supports for string replacement and regular expression
replacement operations using finite state automaton and transducer operations. In this component, we also defined
the recipes for additional string operations such as the security APIs provided by two popular security libraries
(OWASP and Apache). The search-driven constraint solver is invoked when a constraint contains unsupported
operations.

We use six different benchmarks, obtained from different sources, to evaluate JOACO: JOACO-Suite, Stranger
J-Suite, Pisa-Suite, AppScan-Suite, Kausler-Suite, and Cashew-Suite. JOACO-Suite is our homegrown
benchmark, composedof 11 open-source Java Web applications/services and se- curity benchmark applications
that have been used in the literature, with known XSS, XML.i, XPathi, LDAPi, and SQLi vulnerabilities. It is an
extended version of the benchmark used in our previous work enriched with two new applications: Bodgeit and
OMRS-LUI. WebGoat and Bodgeit are deliberately insecure Web applications developed for the purpose of
teaching security vulnerabilities in Web applications. Roller and Pebble are blogging applications that also
expose Web service APIs. WebGoat, Roller and Pebble have been already used as benchmarks in the
vulnerability detection literature. Openmrs module legacyui (shortened as OMRS-LUI) [61] is the user interface
pack- age of Open MRS, a widely used, open-source medical record system that manages highly sensitive
medical data. Regain is a search engine, known to be used in a production-grade system by one of the biggest
drugstore chains in Europe. The pubsubhubbub-java (shortened as PSH) tool [64] is the most popular Java project
related to the PubSubHubbub protocol in the Google Code archive. The rest-auth-proxy (shortened as RAP)
microservice is one of the most popular LDAP-based Web service Java projects returned by a query on
Github.com with the search string ldap rest. TPC-APP, TPC-C, and TPC-W are the standard benchmarks
provided by for evaluating vulnerability detection tools for Web services; the set of Web services they provide
has been accepted as representative of real environments by the Transactions processing Performance Council,
this benchmark contains in total 129 paths to sinks (and as many constraints): 86 paths vulnerable to XMLIi,
XPathi, XSS, LDAPI, or SQLI, and 43 non-vulnerable ones. Note that a vulnerable path corresponds to a single
vulnerability.

StrangerJ-Suite is a security benchmark distilled from five real-world PHP web applications (MyEasyMarket,
proMan- ager, PBLguestbook, aphpkb, and BlogglT). It has been used for assessing the effectiveness of the
stranger tool in the context of automatically detecting and sanitizing security vulnerabilities in PHP Web
applications. We have manuallytranslated every program of this benchmark from PHP to Java so that we could
use it in our evaluation. As shown in the bottom part of Table 7, this benchmark contains in total 9 paths which
are all vulnerable to XSS. PisaSuite contains 12 constraints generated from sanitizers detected by PISA [68]; these
constraints have been usedin the experimental evaluation reported in. AppScan-Suite contains 8 constraints derived
from the security warnings emitted by IBM Security AppScan,a commercial vulnerability scanner tool, when
executing ona set of popular websites.

6. CONCLUSION

This work addresses the challenge of analyzing the source code of a Java Web application for detecting injection
vulnerabilities in a scalable and effective way. We have proposed an integrated approach that seamlessly combines

@International Journal Of Progressive Research In Engineering Management And Science Page | 32

e-1SSN :
&(m INTERNATIONAL JOURNAL OF PROGRESSIVE 2583-1062
[JPREMS RESEARCH IN ENGINEERING MANAGEMENT
| = N— |

AND SCIENCE (IJPREMS) Impact
i Factor :
WWW.ljprems.com Vol. 03, Issue 04, April 2023, pp : 28-34 5725

editor@ijprems.com

static analysis- based security slicing with hybrid constraint solving, that is constraint solving based on a combination
of automata-based solving and meta-heuristic search (Ant Colony Optimization). We use static analysis to extract
minimal program slices from Web programs relevant to security and to generate the attack conditions, i.e., conditions
necessary for the slices to be vulnerable. We then apply a hybrid constraint solving procedure to determine the
satisfiability of attack conditions and thus detect vulnerabilities. This work addresses the challenge of analyzing the
source code of a Java Web application for detecting injection vulnerabilities in a scalable and effective way. We
have proposed an integrated approach that seamlessly combines static analysis-based security slicing with hybrid
constraint solving, that is constraint solving based on a combination of automata-based solving and meta-
heuristic search (Ant Colony Optimization). We use static analysis to extract minimal program slices from Web
programs relevant to security and to generate the attack conditions, i.e., conditions neces-sary for the slices to be
vulnerable. We then apply a hybrid constraint solving procedure to determine the satisfiability of attack
conditions and thus detect vulnerabilities.

The experimental results, using a benchmark comprisinga set of diverse and representative Web applications/ser-
vices as well as security benchmark applications, show that our approach (implemented in the JOACO tool) is
significantly more effective at detecting injection vulnerabilities than state-of-the-art approaches, achieving 98%
recall, without producing any false alarm. We also compared the constraint solving module of our approach with
state-of-the- art constraint solvers, using six different benchmarks; our approach correctly solved the highest
number of constraints (665 out of 672), without producing any incorrect result, and was the one with the least
number of time-out/failing cases. In both scenarios, the execution time was practically acceptable, given the
offline nature of vulnerability detection. As part of future work, we plan to extend our integrated vulnerability
detection approach with support for widely used Java Web frameworks such as Spring. We also plan to
incorporate dynamic symbolic execution to further enhance our approach.

7. REFERENCES

[1] Kiezun, P. Guo, K. Jayaraman, and M. Ernst, “Automatic creation of SQL injection and cross-site scripting
attacks,” in Proceedings of ICSE’09. IEEE, 2009, pp.199-209.
[2] P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant, and D. Song, “A symbolic execution framework for

JavaScript,” in Proceedings of S&P’10. IEEE, 2010, pp. 513-528.

[3] X. Fu, M. Powell, M. Bantegui, and C.-C. Li, “Simple linear string constraints,” Form. Asp.Comput., vol. 25,
no. 6, pp. 847-891, 2013.

[4] Y. Zheng and X. Zhang, “Path sensitive static analysis of Web applications for remote code execution
vulnerability detection,” in In Proceedings of ICSE’13. IEEE, 2013, pp. 652—661.

[5] Cadar and K. Sen, “Symbolic execution for software testing: Three decades later,” Commun. ACM, vol. 56,
no. 2, pp. 82-90, 2013.

[6] J. Thomé, L. K. Shar, D. Bianculli, and L. Briand, “Security slicing for auditing common injection
vulnerabilities,” J. Syst. Softw., 2017, (in press) https://doi.org/10.1016/j.jss.2017.02.040.

[7] J. Thomé, L. Shar, D. Bianculli, and L. Briand, “Search-driven string constraint solving for
vulnerability detection,” in Proceed-ings of /CSE’17. IEEE, 2017, pp. 198-208.

[8] M. Dorigo and K. Socha, “An introduction to ant colony opti- mization,” IRIDIA, Tech. Rep.
TR/IRIDIA/2006-010, 2006.

[9] Apache, “StringEscapeUtils,” https://commons.apache. org/proper/commons-lang/javadocs/api-

3.1/org/apache/ commons/lang3/StringEscapeUtils.html, 2017.

[10] OWASP, “OWASP ESAPIL” https://www.owasp.org/index. php/Category:OWASP Enterprise
Security API, 2017.

[11] W. Huang, Y. Dong, and A. Milanova, “Type-based taint analysis for Java Web applications,” in
Proceedings of FASE’14. Springer,2014, pp. 140-154.

[12] P. M. Pérez, J. Filipiak, and J. M. Sierra, “LAPSE+ static analysis security software: Vulnerabilities
detection in Java EE applica- tions,” in Proceedings of FutureTech. Springer, 2011, pp. 148-156.

[13] T. Liang, A. Reynolds, C. Tinelli, C. Barrett, and M. Deters,“A DPLL(T) theory solver for a theory
of strings and regular expressions,” in Proceedings of CAV’14. Springer, 2014, pp. 646—662.

[14] M. Berzish, Y. Zheng, and V. Ganesh, “Z3str3: A string solverwith theory-aware branching,” CoRR,
vol. abs/1704.07935, 2017.

[15] J. Thomé, “JOACO: Vulnerability analysis through security slic- ing and hybrid constraint solving,”

@International Journal Of Progressive Research In Engineering Management And Science Page | 33

e-1SSN :
&(m INTERNATIONAL JOURNAL OF PROGRESSIVE 2583-1062
[JPREMS RESEARCH IN ENGINEERING MANAGEMENT
| = N— |

AND SCIENCE (IJPREMS) Impact
i Factor :
WWW.ljprems.com Vol. 03, Issue 04, April 2023, pp : 28-34 5725

editor@ijprems.com

[16]

[17]
[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

https://sites.google.com/ site/joacosite/home, 2017.

OWASP, “OWASP Top 10,” https://www.owasp.org/index. php/Category:OWASP Top Ten Project,
2017.

CWE, “Common weakness enumeration,” http://cwe.mitre. org/, 2017.

O. Tripp, M. Pistoia, P. Cousot, R. Cousot, and S. Guarnieri, “ANDROMEDA: Accurate and scalable
security analysis of Web applications,” in Proceedings of FASE’13. Springer, 2013, pp. 210— 225.

O. Tripp, M. Pistoia, S. J. Fink, M. Sridharan, and O. Weisman, “TAlJ: Effective taint analysis of Web
applications,” in Proceedingsof PLDI’09. ACM, 2009, pp. 87-97.

Kiezun A, V. Ganesh, P. J. Guo, P. Hooimeijer, and M. D. Ernst, “HAMPI: A solver for string
constraints,” in Proceedingsof ISSTA4°09. ACM, 2009, pp. 105-116.

Y. Zheng, V. Ganesh, S. Subramanian, O. Tripp, J. Dolby, and X. Zhang, “Effective search-space
pruning for solvers of string equations, regular expressions and length constraints,” in Proceedings of
CAV’15. Springer, 2015, pp. 235-254.

Shannon, S. Hajra, A. Lee, D. Zhan, and S. Khurshid, “Ab- stracting symbolic execution with string
analysis,” in Proceedingsof TAICPART-MUTATION 07. IEEE, 2007, pp. 13-22

K. Sen, D. Marinov, and G. Agha, “CUTE: A concolic unit testingengine for C,” in Proceedings of
ESEC/FSE’05. ACM, 2005, pp.263-272.

S. Horwitz, T. W. Reps, and D. Binkley, “Interprocedural slicing using dependence graphs,” Trans.
Program. Lang. Syst., vol. 12, no. 1, pp. 26-60, 1990.

Qi, H. D. T. Nguyen, and A. Roychoudhury, “Path exploration based on symbolic output,” Trans. Softw.
Eng. Methodol., vol. 22, no. 4, pp. 32:1-32:41, 2013.

@International Journal Of Progressive Research In Engineering Management And Science Page | 34

