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ABSTRACT

In a graph G, a list assignment L is a function that it assigns a list L(V)of colors to each vertex
veV(G). An (L, d)* —coloring is a mapping [ that assigns a color f(v) € L(v) to each vertex ve V(G) so
that at most impropriety d neighbors of V are the same color with (V). A graph G is said to be (k,d )ﬂ< -
choosable if it admits an (L,d )* —coloring for every list assignment L with | L(v)[> k forall v eV (G). In this

paper, we prove that every planar graph with neither adjacent triangles nor 7-cycles is (3, l)* —choosable. In 2016,
Min Chen, Andre Raspaud and Weifan Wang proved that every planar graph with neither adjacent triangles nor 6-
cycles is (3,1)’k — choosable.

Keywords: Planar Graphs, Improper Choosability, Cycle.

1. INTRODUCTION
A k — coloring of G is a mapping £ from V' (G) to a color set {l,2,...,k} such that S(x)# S(y) for
any adjacent vertices X and y. A graph is k—colorabe if it has a k — coloring. Cowen et al.(1986) considered

defective coloring of graphs. A graph G is said to be d—improper k—colorable, or simply,
(k,d )* —colorable, if the vertices of G can be colored with & colors in such a way that vertex has at most d
neighbors receiving the same color as itself. Clearly, a (k, O)ﬂ< —coloring is an ordinary proper k —coloring.

A list assignment of G is a function L that assigns a list L(V) of colors to each vertex v €V (G). An
L —coloring with impropriety of integer d, or simply an (L,d)* —coloring, of G is a mapping [ that
assigns a color J(v) € L(v) to each vertex v €V (G) so that at most d neighbors of v receive color f(v). A
graph is k—choosable with impropriety of integer d, or simply (k,d )* —choosable, if there exists an

(L,d )* —coloring for every is just the ordinary k — choosability introduced by Erdés et al. (1979) and
independently by Vizing (1976). A famous and classic result given by Thomassen (1994) is that every planar graph is

(5,())*—choosable. However, Voigt (1993) showed that not all planar graphs are (4,0)*—choosable by

establishing a non —(4, 0)* —choosable planar graph.
In 1999, Srekovski(1999a) and Eaton and Hull (1999) independently introduced the concept of list improper
coloring. They showed that planar graphs are (3, 2)* — choosable and outerplanar graphs are (2, 2)* — choosable.

They are both improvement of the results shown in Cowen et al. (1986) which say that planar graphs are (3,2)* -
* . *

colorable and outerplanar graphs are (2,2) colorable. Note that there exist non —(2,2) — colorable planar graphs

and non—(2, l)* — colorable outerplanar graphs which were constructed in Cowen et al. (1986). Let g(G) denote the

girth of a graph G, i.e., the length of a shortest cycle in G. The (k,d )* — choosability of planar graph G with given

2(G) has been investigated by Srekovski (2000). He proved that every planar graph G is (2, 1)* — choosable if

g(G)=9, (2, 2)* — choosable if g(G)=>7, (2,3)=k — choosable if g(G)=6, and (2, d)* — choosable if
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d >4and g(G)=5. The first two results were strengthened by Havet and Sereni (2006) who proved that every
planar graph G is (2, l)* — choosable if g(G)=8 and (2, 2)* — choosable if g(G) = 6. Recently, Cushing and
Kierstead (2010) proved that every planar graph is (4, 1)* — choosable. So it would be interesting to investigate the
sufficient conditions of (3,1)* — choosability of subfamilies of planar graphs where some families of cycles are
forbidden. Srekovski proved in Srekovski (1999b) that every planar graph without 3-cycles is (3, 1)* — choosable.
Lih et al. (2001) proved that planar graphs without 4- and [ —cycles are (3, l)* — choosable, where / € {5,6,7}.

Later, Dong and Xu (2009) proved that planar graphs without 4- and /— cycles are (3,1)* — choosable, where
[ €{8,9}. These two results were improved further by Wang and Xu (2013) who showed that every planar graph
without 4-cycles is (3,1)* — choosable. More recently, Chen and Raspaud (2014) proved that every planar with
neither adjacent 4-cycles nor 4-cycles adjacent to 3-cycles is (3, 1)* — choosable. This absorbs above results in Lih et
al. (2001), Dong and Xu (2009), Wang and Xu (2013). Then, Min Chen, Andre Raspaud and Weifan Wang (2016)

proved that every planar graph with neither adjacent triangles nor 6-cycles is (3, 1)* — choosable.

Theorem 1.1 Every planar graph with neither adjacent triangles nor 7-cycles is (3, 1)* — choosable.
The proof of Theorem 1.1 is done in the section 3.

2. NOTATION

All graphs considered in this paper are finite, simple and undirected without multiple edges. Call a graph G
planar if it can be embedded into the plane so that its edges meet only at their ends. Any such particular embedding of

a planar graph is called a plane graph. For a plane graph G, we use V,E,F,A and O
V' (G),E(G),F(G),A(G),0(G)) to denote its vertex set, edge set, face set, maximum degree and minimum
degree, respectively. For a vertex V€V, the degree of v in G, denoted by d;(V), or simply d(v), is the
number of edges incident with v in G'. |V(G)| and | E(G)| are order and size. The neighborhood of v in G,

denoted by N (v), or simply N(V), consists of all vertices adjacent to v in G. Call v a k —vertex, ora k' —

vertex,ora k — vertex if d(v)=k, or d(v)>k, or d(v) <k, respectively. A similar notation will be used for
cycles and faces. For a face f € F', the number of edges of the boundary of f*(where cut edge, if any, is counted
twice), denoted by d( ), is called the degree of f . Analogously, the notations above for vertices will be applied to
faces. We write f =[vv,...;] if V|,V5,...,V; are consecutive vertices on f  in a cyclic order, and say that f  is
a (d(v,),d(v,),...,d(v;)) —face. Next, let f; be the face with vv; and Vv, as two boundary edges for
i=1,2,...,d(v), where indices are taken modulo d(Vv) and define d(v)+1=1. Let v bea vertex,and v isa 3-
vertex in (G such that the three neighbors vertices adjacent with V. An edge x) is called a (d(x),d(»))—edge,

and X is called a d(x)—neighbor of y. A k —cycle is a cycle of length k. In this paper, a 3-face is often called a
triangle. Call a vertex or an edge triangular if it is incident with a triangle. Otherwise, a vertex or an edge iso-
triangular if it is not incident with a triangle but its neighbor vertex is incident with triangle. Then 4-face is often
called a quadrilateral. Two cycles or two faces are intersecting if they have at least one vertex in common; and are
adjacent if they have at least one edge in common. Again, 4-face is called a quadrilateral in which two triangles are
adjacent. We define the following notation:

. Let U be a 4-vertex. If u is incident with f], f5, f3 and f so that fj =[uwu,]=(3,4,5")—face

and then d(f3) =4 and d(f,)=d(f;)=8" — face. It is called 4-light vertex. Shown in Figure 1.
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Figure 1:

Definition 2.1 Let f be 3-face such that f = [uu,u,]and e ' be an edge incident with f.

1e., €

> € e can be written by e e

uupy > Tujup

Definition 2.2

5

A 3-vertex is said to be poor if it is incident with one 3-face and two 4-faces. Then it is called 3-poor.

Let u be a 4-vertex and f =[uuu,] be a 3-face. If u is incident with one 3-face, one 4-face and one 5 face
adjacent with e r and another is 6-face, then it is said to be 4-poor. (OR)

A 4-vertex is said to be poor if it is incident with one 3-face and two of e r incident with one 4-face and one 5-

face and another is 6-face. Then it is called 4-poor.

Let u be a 5-vertex and f* =[uuu,] be a 3-face. If u is incident with one 3-face and both one 4-face and one

5-face adjacent with e ' and others' two are 6 —face and 5° — face, then it is said to be S-poor.
(OR)

A 5-vertex is said to be poor if it is incident with one 3-face and two of e ' incident with one 4-face and one

~face and others are incident with 67 — face and 5" — face. Then it is called S-poor.

Definition 2.3

A 3-vertex is said to be semi-poor if it is incident with three 4-faces. Then it is called 3-semi-poor.

A 4-vertex is said to be semi-poor if it is incident with one 3-face adjacent to one 4-face and one 4-face adjacent
to one 3-face. Then it is also called a semi-poor-I vertex.

A 4-vertex is said to be semi-poor if it is incident with one 3-face adjacent to one 4-face and one 4-face adjacent
to one 4-face. Then it is also called a semi-poor-II vertex.

A 4-vertex is said to be semi-poor if it is incident with one 3-face adjacent to one 5-face and one 4-face adjacent
to one 3-face. Then it is also called a semi-poor-III vertex.
A 4-vertex is said to be semi-poor if it is incident with one 3-face adjacent to one 5-face and one 4-face adjacent to
one 4-face. Then it is also called a semi-poor-1V vertex.

Definition 2.4

A 3-vertex is said to be full-poor if it is incident with one 3-face, one 5-face and 8" —face. Then it is called 3-
full-poor.

A 4-vertex is said to be full-poor if it is incident with one 4-face adjacent to one 3-face and one 4-face adjacent to
one 3-face. Then it is also called a full-poor-I vertex.

A 4-vertex is said to be full-poor if it is incident with one 4-face adjacent to one 3-face and one 4-face adjacent to
one 4-face. Then it is also called a full-poor-II vertex.
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e A 4-vertex is said to be full-poor if it is incident with one 4-face adjacent to one 4-face and one 4-face adjacent to
one 4-face. Then it is also called a full-poor-III vertex.
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Theorem 2.5 (Chen [1]). Every planar graph neither adjacent triangle nor 6 cycle is (3, l)* — choosable.

Theorem 2.6 (Chen [2]). Every planar graph without 4-cycles adjacent to 3- and 4-cycles is (3, l)* — choosable.
Lemma 2.7 (Lih, Wang, Zhang [9]).
(A1) 8(G)=3.

( A 2) No two adjacent 3-vertices.
Lemma 2.8 Let f be (3,4,5)-face. Then all vertices of f* are poor.

Proof: Let f =[xyz]=(3,4,5)— face and then x; € N(x), ¥,,¥, € N(¥) and z;,2,,23 € N(z). Suppose
to the contrary that there is no poor vertex of fin G. Let G' ={xX, v,z,X;, V|, V5,2,Z5,Z3}. By minimality of
G, suppose that G —G' hasan (L, 1)* — coloring of /3.

First, for d(x) =3, without loss of generality, let XxX;); ) be a quadrilateral and e, be not incident with 4-

face. We may provide the colors B(y) = B(x;) = f(z;) =1and S(»,) = f(z) =2.We must have the color
P(x) with L(x) {,B(y)U,B(Z)Uﬂ(xI)} So, we choose the color f(x) with 3. If we recolor S(x;) with

L(x)) {,B(yl)U ﬂ(x{)}, then we will get the color of the same [(x).If we recolor S(x;) with 3, we can
exchange the colors B(x) and B(z)However, since e, is not incident with 4-face, it means that it is incident with
8-face. So, ¥ and X{ can be adjacent to each other. If y;X;X{ is a triangle, we must have the color S(x{) with 3.
So, it is impossible for the color SB(x;) with 3. If ylxlxl' is not a triangle, )1y, can be a triangle. So, we can
assume that the colors S(x;)and S(y,) with 3. Since e,, is not incident with 4-face, so X{ # z;. So, we could
have the colors [ (x{) and B(z;) are the same. Then we change the colors £(z)and B(z;). Itis contradiction for
X vertex.

Secondly, for d(y) =4 and d(z) =5, we have proved that X is a poor vertex. Without loss of generality,
we have X Xyy; and X,Xzz; are quadrilaterals and then we cannot have both y),y, is a triangle and Yy, * ), is a
quadrilateral. So, we may assume that zz,z5 is a triangle. Since e, is not incident with 4-,5-,6-faces. Without loss
of  genemality, let  L(x)=L(y)=L(y,)  =L(z)=1{,23},  L(y)=L(z,)={,2,4},
L(z)=L(x)=1{1,3,4} and L(z3)=1{2,3,4}. If we provide the colors S(¥;)=L(»,)=P(z,)=1,
P(z;)=3 and B(y)= P(z3) =2, then we must have the colors S(x;) with 4 and S(z) with 4. We can give

the color f(x) with L(x) {ﬂ(y)U ,B(Z)U P(x;)}. If werecolor B(y) with 4, we must exchange the colors

P(z3) and S(z). However, 2 & L(z). It is impossible. Thus, it is contradiction by assumption. Therefore, the
proof is complete.

Lemma 2.9 If f be a(4,4,4,4)-face, then every vertex of 4-face can be a 4-light vertex.

Proof: Let [ xyzw]be a 4-face in which every vertex is a 4-vertex. Assume that X;, y;, Z; and W; are the neighbors
of x,y,z,w, composing of a triangle with their neighbors where 7 € {l,2}.Suppose to the contrary that none of

X,y,zZ,w is a 4-light vertex such that d(4,)=4, where A ={x;,y;,,z;,W;},i={1,2}.Let

G ={x,y,z,w,x;,y;,2;,W;}, i ={1,2}. By the minimality of G, G — G’ admits an (L, l)* — coloring of f3.
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We will consider two cases.

Case (i) We may give colors with f(x) and f(z) are the same and F(y) and F(w) are also. So, let
P(x)=p(z)=1and B(y)= (W) =2. Thus, we can deduce that B(q;) € {2,3} and [(b;) € {1,3}, where
a; ={x;,z;} and b; ={y;,w;}, i €{l,2}. We consider three sub-cases in the following.

Sub-case (i) Firstly, for X we will consider X;and X, have to be incident with only one triangle. By assumption,
we have [x,x,x] = (3,4,4) — face. We must have the colors {3(x), B(x5), B(x5)} < {1,2,3}. If x;x{x}x, isa
quadrilateral, we cannot give the same colors

L(x)), P(x3) and L(x3). So, we may assume that LS(x)=/p(x3)=1, L(x)=/L(x)=2,
L(x{)=P(x{) = f(x5) =1. Here, we must have the colors S(x}) = 2. If we exchange the colors S(x,) and
P(x5), we must recolor SF(x) with 2 or 3. Clearly, (x)=2 is impossible. So, we must have the color S(x)
with 3. Moreover, secondly, for the vertex ) we will consider y;and ), have to be incident with only one triangle.
We may assume that B(y) =1, B(y,)=3. If ylyl’yéyz is a quadrilateral, we have different colors between yl'
and V5. So, if we assume that S(y5) = B(15) =2, we must have the colors S(y;) with 3. Clearly, we have
L(y)=land B(y,)=31If we exchange the colors S(y,)and F(¥5). We must recolor S(y)with 3. It is

contradiction by assumption.

Sub-case (ii) For the vertex x, we will consider X;and X, have to be incident with triangle. We must have the
colors {S(x]), B(x5)B(x5)} ={1,2,3}. Let x,x)x5be a triangle and be a XX X)X, quadrilateral. We may
assume that S(x;)=2, P(x,)=3, f(x{)=P(x5)=1. Here, we must have the color S(x})=2. If we
exchange the colors S(x;) and ﬂ(xl' ), and then the colors S(x,) and ﬂ(xé ), we must recolor S(x) with 3.

Moreover, for the vertex y we will consider ); and ), have to be incident with triangle. Let yzyéyé' be a triangle

4

and ;)| V5V,be a quadrilateral. We may assume that S(y;) =1, B(y,)=3and S(y/) = L(¥5)=2. So, we
must have the color f()5) =1.1f we exchange the colors S(y) and S(y,), it is impossible for S(y) < {1,3}.

Thus, we will exchange the colors () and SB(),) . Itis contradiction by assumption.

Sub-case (iii) For the vertex x, we will consider X; and X, to be incident with three triangles. Obviously, X; and
X, do not be incident with any quadrilateral. Let S(x;) = ﬂ(xé) =2and ,B(xl' ) =3. We must have the colors
P(x,) with 3 and S(x5) with 1. Similarly, we will consider the vertex y.Let B(y;)=f(y5)=1and

1) =2. We must obtain the colors with 3 and %) with 2. If we recolor any vertex, it is very strict.
N 2 2

Since x; and y;where i€ {l,2}, are incident with only 8" —face, any neighbor of X{, X5 and Xxjand any
neighbor of y{ and yg cannot be adjacent to each other. Here, (L, 1) — coloring is satisfied. Thus, it is contradiction.
It is enough to prove only two vertices X and y .

Case(ii) We may give colors with f(x) and () are different. So, let f(x)=1and f(z)=2and f(y) =3 and
P(w)=a.We must have the colors B(x;)€{2,3}, f(y;)€{L,2}, and B(z;)€{l,3}, where ie{l,2}.
Suppose that @ =3. We must have S(w;) € {1,2}. If we exchange the colors f(x)and [(X;), we must have
colors f(x) € {2,3}. If we have the colors f(x) with 3, it is impossible because of () =3. So, there is the
color B(x) with 2. If we exchange the colors £(»)and B();), we must have colors B(y) € {1,2}. If we have a
color f(y) with 2, it is impossible. So, there must be the color f())) with 1. If we exchange the colors £(z) and

@]International Journal Of Progressive Research In Engineering Management And Science Page | 317



e-ISSN :
INTERNATIONAL JOURNAL OF PROGRESSIVE

2583-1062
&‘ JPRE M& RESEARCH IN ENGINEERING MANAGEMENT 583-106
A —/ AND SCIENCE (IJPREMS) Impact
Factor:
www.ijprems.com actor
Vol. 04, Issue 09, September 2024, pp: 312-330 5.725
editor@ijprems.com

B(z;), we must have colors f(z) € {1,3}. It is impossible for two of f(z) € {1,3}. So, we must recolor the
colors B(w) with L(w)\{ ﬂ(Wl)U ,B(X)U P(z)}. Thus, it is contradiction for suggestion.

Similarly, for the vertex z and w, we can deduce that the resulting coloring is an (L, l)* — coloring, which

is a contradiction. Therefore, the proof is complete.

Lemma2.10  Let f bea3-face by (3,4,4")— face.

(1) If 3-vertex is a 3-poor vertex, then none of two 4-vertices is a 4-semi-poor vertex.
(i1) If a 3-vertex is a 3-poor vertex, then the neighbors of the third vertex not on e ' is 4" — vertices.
(iii) If a 3-vertex is a 3-poor vertex, then at most one vertex of the neighbors of two 4-vertices is 3-vertex.

Proof: Let f =[uwu,]=(3,4,4")—face and N(u)={u;,uy,us} and N(u;)={u/,u't where i ={1,2}.
We will prove the first (i). Let # be a 3-poor vertex. Suppose to the contrary that #; is a 4-semi-poor vertex in
which i={l,2}. We note that u; has a 4-vertex incident u,' and u ;’ and then u ;' is incident with u; Let
G' = {u,u;,uy,uy,uf,u5,uy,us}. By minimality of G, suppose that G—G'has an (L, 1)>I< — coloring of /3.
Without loss of generality, let S(u) = f(u3) = f(u) =1, f(u;)=Lu))=2 and f(u,)= L(u;)=3. Since
| L(u3) [ 1, so we can assign the color S(u3) with 2 or 3. If we recolor (1) with 2, then we must assign the color
S(uy) with 1. But S(uy) =1. So, we must assign the color (1) with 2 or 3. Here, by assumption, ;1 * 1 must
be a quadrilateral. So, (*) must be 2. Hence we must assign the color ﬂ(ul") with 3. If we choose the colors
L(u)with 3 and S(us) with 2, we must assign the color (1) with 2. If we choose the colors S (u]") with 2 and
P(uy) with 3, then we must assign the color ﬂ(u{ ) with 3. If we recolor S(u) with 3, then we must assign the
color S(u;) with 2 or 1. If we choose fB(u;)with 2 and S(u,) with 1, then we must assign the color ﬂ(u{) with 1
or3and [ (ug ) with 2 or 3. If we choose the color (u{) with 3, then we must assign the color (”1”) with 2. Thus,
it is contradiction by assumption. If we choose the color (1) with 1, then we must assign the colors S(u;") with 3
and f(uy) with 2. If we choose the colors S(u3) with 3 and S(u}) with 3, then it is contradiction by assumption.

If we choose the color A(u5) with 2 and S(u}) with 3, then it is contradiction.
We will prove the second (ii) and (iii) simultaneously. Here, since u is incident with two 4-faces by

Theorem 1.1 , so cannot be incident with any 4-faces. Thus, we have to know that it could be incident with 6" —

faces. So, d(uy) >4 and d(u{)=d(uj)=3. However, u; and u} cannot be adjacent to 3-vertex because of
and U, are not 4-poor vertices. Therefore, the proofis complete.

Lemma 2.11 Let u be a 3-vertex in a graph G . If © is a 3-semi poor vertex, then none of 4-face incident with
U can be adjacent to

(1) a 4-poor vertex,
(i1) a 4-semi poor I vertex and
(iii) a 4-semi poor III vertex.

Proof: Let # be a 3-semi poor vertex in a graph G and f| = [uuu,x], f, =[u uuzy]and f; =[usuu,z] and
then N(u)={u;,u,,us}. We will prove first condition (i). Suppose to the contrary that all of f;, f, and f3 are
incident with 4-poor vertex. Firstly, we will prove a 4-poor vertex incident with f;, f, and f3. Without loss of

generality, suppose that all of fl , [ , and f- 3 are incident with a 4-poor vertex. Here, obviously we will assume that

each of X, ¥y and z is incident with a 4-poor vertex. We will consider @ vertex by contraction of X, y and z. So,
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let N(a)=1{a,,a,}.Continuously, we may construct each triangle incident with @ such as u;x;x, u,yy,and
u3zz;. Then a, is incident with both 5-face and 6-face. Let G' = {u,u;,u,,u5,a,a,,a, }. By minimality of G,
suppose that G—G" has an (L, 1)* — coloring of /3. We will consider two cases.
Case (7). We may assume that S(u;), PB(u,),and [(us),are the same colors and F(x), S())and
P(z)are the same. So, we may assign the colors B(u;), B(u,) and S(u3)with 1 and then the colors S(X),
P(y)and B(z) with 2. Here, we must assign the color S(u) with L(u)  {B(u,), f(u,), B(u3)} and we must
assign the color f(a;) with 3. Evidently, 5-face is 3-coloring and 6-face is 2-coloring. So, we must assign the colors
P(a,) with 1. Here, we will assign the color £(u) with 3. Here, we must have all colors £(x), S(») and S(z)
with 2. If we exchange the colors S(u) and S(u;), we must recolor [(u,) with L(u,)  {B(u3)}, S(uy)with
L(uy)  {Pu3)} and B(x)), with L(x;) {B(x])}. Since S(x,)=1,it must be S(x{)=1. Now, we can
have the color B(x;) with 2. It is contradiction. Moreover, since #, and u5 are incident with 6-face and we have
that 6-face is 2-coloring, they must be the colors [ (ué) and [ (ué) with 2. So, we must have the colors B(u,) and
P(uz) with 3. It is contradiction.

Furthermore, since | L(u) |=3, we must assign the color (1) with 2. If we exchange the colors (1)

and S(u;) we must recolor S(u,) with L(u,) {f(u3)} and B(uy) with L(uy) {S(u3)}. So, we must
have the colors f(u,) and f(u3) with 3. Then, we will exchange the colors £(x) and S(x,). However, it is

contradiction by assumption.
Case (if). We may assume that S(u;), [(u,) and B(uy) are different. Evidently, we must have the colors

B(x), f(¥) and B(z) are different. We may assume that the colors S(u;) with 1, S(u,) with 2 and S(u;) with
3. So, we must have the colors f(x) with 3, () with 1 and B(z) with 2 and then continuously we must have the
colors B(x;) with 2, S(y;) with 3 and B(z;) with 1. If we assign the color £(u) with 1, then we must recolor
Pu)with L(uy) { ,B(ul')} Thus, we must have the color S(u;) with distinct [ (ul') Here, it is
contradiction.

If we assign the color S(u) with 2, then we must recolor B(u,) with L(u,) {f(u})}. Here, we
must have the color f(u,) with distinct (1} ). However, it is contradiction. If we assign the color S(u) with 3,
then we must recolor B(uy) with L(uy) {f (ué)} Here, we must have the color S(u3) with distinct 3 (ué)
However, it is contradiction.

Finally, for the condition (ii)and (iii) are similar as the proof of the condition (i).

Therefore, the proof is complete. u
Corollary 2.12 Suppose to Vis a 3-semi-poor vertex in which f; =[vwxv,], f; =[vw,yvs] and f3 =[vv3z1].
If the three vertices of X, ¥ and z are 3-semi-poor vertices, then the three vertices of V|, v, and Vv; are 5" -
vertices.

Lemma2.13  Let v be 3-vertex, N(V) ={Vv;,V,,V3} and f =[vvv,]. If v is a 3-full-poor vertex in which
V; and V5 are incident with 5-face, then

@) the three neighbors of v are 4" — vertices (i.e., d(N(u)) >4) and

(i1) exactly the vertex V; is either a 4-poor vertex or a 5-poor vertex.
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Definition 2.14 (i) A vertex u is a d(u)— vertex incident with at most 7 — triangles and others are any faces. Its
vertex is called 7" — vertex.

Here, | 7" |=the number of 7 — triangles incident with a vertex

d(u)

(i) A vertex u is d(u)—vertex with d(u) >4 in which u is incident with exactly {TJ 3-faces and exactly

d(u
{% 4-faces. It is said to be a 7™ — vertex. Evidently, if d(u) is odd, then every 4-face must be incident

between two 3-faces.

Note that : If # is a 3-vertex incident with one 3-face and one 4-face or one 5-face, then another is one 8" —face. It

is called 7' — vertex.
Lemma 2.15 Let # be 79" — vertex in G.
Conditions: () Ifu is T ) _ ertex (d(u)=3), then it is incident with distinct one 3-face, one 4-face and

one 8" —face. It is called a special T’ 3 vertex.

The following conditions:

Let u be 79 — vertex in G with d(u)=4.

(ii) If u is 79 — vertex (d(u) =4), then it is incident with distinct two 3-faces, one 4-face and one 8" —

face.
(i) Ifu is T ) _ vertex (where d(u)=15), then it is incident with distinct two 3-faces, one 4-face, and then
others are 5" — faces.

(iv) For d(u)=>6, ifu isa T 4 _ vertex and d (1) is odd, then it is incident with at most two 5" — faces

du)-1
and others are incident with at most [%—‘ —1 8" —faces.

(v) For d(u)>6, ifu isa T ) _ Vertex and d (1) is even, then it is incident with at most [

Axn A An
>R 9

Figure 7:
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Corollary 2.16 If u isa T — vertex (du)=7,du)=4n+3,n=1,2,...) in which there are
d d
incident with at most L%J 3-faces and at most L%J 4-faces, then there are at most two 5% —faces and
d 3
( (1) —>) 8" —faces.
4 4
Corollary 2.17 If u is a 79 — vertex (du)=29,d(u)=4n+5,n=1,2,...) in which there are
d d
incident with at most L%J 3-faces and at most L%J 4-faces, then there are at most two 5% —faces and
d 5
(M —2) 8" —faces.
4 4

3. DISCHARGING PROCESS

We now apply a discharging procedure to reach a contradiction. We first define the initial charge function

ch on the vertices and faces of G by letting ch(v) = ad(v)—2b if veV(G) and ch(f)=(b—a)d(f)—2b,
3 3
feF(G). Wenote a = > and b = % so that we get the initial function ch(v) = Ed(v) -7 if veV(G) and

ch(f)=2d(f)-7, feF(G). It follows from Euler's formula |V (G)|—|E(G)|+|F(G)|=2 and the

relation
Y. dv= 3, d(f)=2|EG)]
vel (G) feF(G)
so that the total sum of initial function of the vertices and faces is equal to

S o+ Y ()= Y (%d(v)—7)+ 3 @d(f)-7)

veV (G) feF(G) vel (G) feF(G)
=%(2 |E(G))=T|V(G)|+22[ E(G))-T|F(G)|
==1(V(G)[+|F(G)|-|E(G)]) =-14

Since any discharging procedure preserves the total charge of G, if we can define suitable discharging
rules to change the initial charge function ¢/ to the final charge function ¢i’ on VU F such that ch'(x) >0 for
all xeVUF, then

0< > dix)= D, ch(x)=-14,
xeVUF xeVUF

a contradiction completing the proof of Theorem 1.1 when G is 2-connected.

Proof of Theorem 1.1

Since G is 2-connected, G has no adjacent 3-faces or 7-cycles and O(G) >3, the following Lemma is
obvious.

Lemma 3.1

(i) In G, there is no adjacent 3-faces.

(i1) In G, there is a 4-face adjacent to at most two 3-faces. Moreover, when a 4-face is adjacent to at least one

3-face, the 4-face can be adjacent to no 4-face except V is a 3-poor vertex.

(1ii) In G, there is a 4-face adjacent to at least one 4-face.

@iv) In G, there is a 5-face adjacent to at most one 3-face and no adjacent to any 4-face.
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W) In G, there is no 6-face adjacent to a 3-face.

We will introduce the discharging rules:

R 1. Charge froma 4" —face [

1

R1.1. If d(f)=4, then f sends 1 to each incident vertex.
3 .

R12. Ifd(f)=5, then f sends s to each incident vertex.
5 L

R13. If d(f)=6, then f sends P to each incident vertex.

9
R14. If d(f)=8, then f sends 2 to each incident vertex.

R2. Charge to a 3-face f =[V,v,V3] where d(v;) <d(v,) <d(v3).

R 2.1. Suppose to Vv is a 4-light vertex.

9 1
Let f =[wv,w]=(5",3,4)—face. Then v gets 3 from each 8" —face and 7 from 4-face and it

3 10 + 5 9 +
sends 5 to f. Then v, gets E from 8" —face and Z from f . After that v, gets g from 8" — face and sends

13

—to f.

16

R 3. Suppose to V is a poor vertex in which f* =[v;v,v;] with d(v}) <d(v,) < d(v3).

1 3
R3.1. Let d(v;)=3 and v; be a3-poor vertex. Then v, gets 5 from each 4-face and f* sends 5 to V.

3 5 1
R3.2. Let d(v,)=4 and v, be a4-poor vertex. v, gets g from 5-face and g from 6-face and [ gets g from
V,.

3 5 5
R3.3. Let d(v3) =5and v; be a 5-poor vertex. V; gets g from 5-face, — from 6 — face and — from 5" — face

8
and then f gets 3 from vj.

R 4. Suppose to V be a 3-semi-poor vertex in which f, =[vwxv,], f; =[vw,yv;]and f3 =[vv;zv;] with
d(v)<d(v;) where i €{1,2,3}.

5
R4.1. Let d(v) =3 and Vv be a 3-semi-poor vertex. Then Vv gets 3 from each 4-face.

R 4.2. Let d(x)=d(y)=d(z) =3 and they be 3-semi-poor vertices. So, V; a 5" —vertex where i € {1,2,3} .

1 1 1
Then Vv gets 5 from each 4-face and g from each 5° —vertex and 4-face sends g to other vertices not 3-semi-

poor vertices. Moreover, x, y and z are like as V.

RS. Suppose to V; be a 3-full-poor vertex in which f =[vv,v;] with d(v)) <d(v,) <d(v3).
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3 18 + 7 +
Then v gets g from 5-face and ? from 8" —face and V; sends % to f. Moreover, 8" — face sends %

to other vertices.
R 6. Suppose to V be a 4-semi-poor vertex in which f; =[vwv,], f3 =[vw;xv,]and f, and f, are 8" —

faces with d(v;) =d(v,)=3.
: 1 9 + : 3
R6.1  Let vbea4-semi-poor I vertex. Then v gets 3 from f; and 3 from 8" — face and it sends 5 to f|.
9 1 9 +
R6.1.1 For d(v))=d(v4)=3, v, gets 3 from f|, 7 from 4-face and 3 from 8" — face and then Vv, gets

9
= from f; and — from 8" — face.
3 8
: 1 9 + , 3
R 6.2  Let v be a4-semi-poor II vertex. Then vV gets Z from f3 and g from 8" — face and it sends 5 to f}.
9 1 9 +
R6.2.1 For d(v|)=3, v, gets g from f|, Z from 4-face and g from 8" — face.

. : . : 3 2
R 6.2.2 For d(v,) =3, if the outer neighbor of v, is 4-semi-poor vertex, then v, gets Z from f3 , g from 4-
9 . . . . 3
face and g from 8" — face. If the outer neighbor of V, is not 4-semi-poor vertex, then v, gets Z from f3 and Z

9 +
from 4-face and — from 8" — face.

1 9 3
R 6.3  Let v be a4-semi-poor III vertex. Then v gets g from f; and g from 8" — face and it sends 5 to

fi-

7 3 9
R6.3.1 For d(v))=d(vy)=3, v, gets g from f, g from 5-face and g from 8" —face and then v, gets

9
— from f3 and — from 8" — face.
3 8
. 1 9 + , 3
R 6.4 Let v be a 4-semi-poor IV vertex. Then V gets Z from f3 and g from 8" — face and it sends 5 to fl
7 3 9 +
R6.4.1 For d(v))=3, v gets 3 from f, 3 from 5-face and 3 from 8" — face.

, , : : 3 2
R 6.4.2 For d(v,) =3, if the outer neighbor of V, is 4-semi-poor vertex, then Vv, gets 2 from f3, 3 from 4-

9 2 1
face and g from 8" — face. If the outer neighbor of v, is not 4-semi-poor vertex, then v, gets g from f3 and —

4

9 +
from 4-face and g from & — face.

R7.  Suppose to v be a 4-full-poor vertex in which f; =[wxv,], f3 =[vw3v,] and f, and f,are 8" —
faces with d(v;) =d(v,) =3.
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9 2
R7.1 Let v be a 4-full-poor I vertex. Then v gets g from each 8" — face and it sends g to vy and V.

1 9 2
R 7.1.1 For d(v;)=d(v,)=3,both V| and v, get > from 4-face and 2 from 8" — face and then they get 3

1 1
from V. Moreover, f; and f, send E to 3-vertex and g to 4" — vertex.
R72 Let v be a4-full-poor II vertex and V; is incident with 3-face and v, is incident with 4-face. Then v gets

9 + _ 2
— from each 8" — face and it sends g to v, and g to Vy.
1 9 + ) 2
R7.2.1 For d(v))=3, v, gets 5 from 4-face and g from 8" — face and then it gets g from V.

1 2
R 7.2.2 For d(v,) =3, if the outer neighbor of v, is 4-semi-poor vertex, then v, gets 5 from f; 3 from 4-
9 + 1 , : :
face and — from 8" — face and then gets g from V. If the outer neighbor of v, is not 4-semi-poor vertex, then v,

1 1 9 + 1
gets 5 from f3 and Z from 4-face and — from 8" — face and then — from V.

9 2
R 7.3 Let v be a4-full-poor III vertex. Then v gets g from each 8" — face and it sends g to both v; and Vy.

R 7.3.1 For d(v;) =d(v,) =3, if the outer neighbors of V; and v, is 4-semi-poor vertices, then both of v, and v,

9 2
get 1 from each 4-face and — from 8" — face and then get g from V. If the outer neighbors of V| and Vv, are not 4-

1 9
semi-poor vertices, then V;and v, get 1 from f; and f3 and Z from 4-face and — from 8" — face and then —

from V.

R S. Suppose to V is T _ vertex.
We deduce induction for d(v) > 3.

R81 T —vertex.

Let f =[vvv,] and Vv be 3-vertex incident with 4-face and 8" —face. If visa I vertex, then V gets

1 9
~ from 8" — face and 7 from 4-face. Then f sends 3 to V.

R82 T — vertex.

1 1
If vis T* — vertex incident with one 4-face and one 8" —face, then v gets E from 8" —face and —

2
from 4-face and then vV sends — to each 3-face.

R83. T° —vertex

3 1
Let f; =[vwv,]and f5 =[vvyv,]. v gets 3 from each 5" —face and 1 from 4-face. Then v sends

7
g to each 3-face.
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R84 T —vertex

3 1
R8.4.1 Let vbea '™ —vertex such that 1 is even and n>6. v gets g from each 8" —face and — from 4-

53d(v)—224
face. In general , ¥ sends ———————— to each 3-face.
16d(v)
d(v) : L d) 3
R 842 Let v bea T —vertex such that d(v) is odd and d(v)>7. Here Vis incident with (——Z)
d(v
8" —face where d(v)=4r+3,r=1,2,....,n and d(v)>7 and incident with {%J 3-face and two 57 —
face.
3 " 1 3 +
Then V gets 3 from each 8" — face, 7 from 4-face and 3 from each 5" — face.
52d(v)—194
In general for d(v) =4n+3, n=1,2,..., and d(v) > 7, v sends L to each 3-face.
16d(v)
d) . . . d(v) 5
R 843 Let v bea T“""/ —vertex such that d(v) is odd and d(v)>9. Here Vv is incident with (T—Z

)

8" —face where d(v) =4n+5, n=1,2,... and d(v) > 9 and incident with {TJ 3-face and two 5" — face.

3 + 1 3 +
Then v gets g from each 8" — face, Z from each 4-face and g from each 5" — face.

52d(v)—202

I 1for d(v)=4n+5, n=1,2,..., and d(v) =9, v send
n general for d (V) and d(v) sends ( T6d(v)

) to 3-face.

1 5
R 9. For d(v) >4, if vis incident with 3-face, 4-face, 6" — face and 8" —face, then v gets Z from 4-face, —

9
from 6 — face and g from 8" — face and sends 1 to 3-face.

R 10. Otherwise, if V is not a poor vertex in which f =[v},V,,v3]=(3,4,5) —face, then f gets 1 from 4-vertex
3 .
and 5 from 5-vertex and then it sends g to V.

It remains to show that the resulting final charge ¢’ is satisfied with ¢h’ >0 forall xe VUF. Let veV(G)

and f € F(G). The proof can be completed with d(x) forall xe V' UF. Let veV(G) and f € F(G). Since

d(v)=3. If d(v)=4, by R 1 and R 2, then v is a 4-light vertex with f =(3,4,5")—face. So,
1 1 3

ch'(v) :Ch(V)+2X§+Z_% =%><4—7+2><§+Z—5:0by R 2.1. Continuously, if d(v)=3 by R 2.1

, 10 5
and R 5, then f =(3,4,5")— face and the 3-vertex is 3-full-poor vertex. So, ch'(v) = ch(v)+ Y + 7 =0by R

2.1and ch'(v) = ch(v)+%+%+% >0 RS.

If f=[v,3]=(3,4,5) by R1andR3and by Lemma 2.8, then V|, V, and V; are 3-poor, 4-

, 1 3
poor and S5-poor vertices. So, for ch (V):ch(v)+2><5+520 by R 3.1. And then for d(v)=4,
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3 5 1 3 51
ch'(v) =ch(v)+—+———=—1+—+———2 OR 3.2. Moreover, for d(v) =5,
6 3 5 6 3
5 8 1 3 5 8
ch'(v) —ch(v)+ +2x g—§:5+ 5 +2x g—§> OR33.1f d(v) =3 and f, =[vwx»,], f; =[]

and f3= [vv3zv1], then Vv is a 3-semi-poor vertex by R 1 and R 4. So, we have
5 3 5
ch'(v)= ch(v)+3xg = §x3—7+3xg = 0by R 4.1. By Corollary 2.12 if d(x)=d(y)=d(z)=3and they

are 3-semi-poor vertices, then d(v;)=5. So, Ch'(v)zch(v)+3x%+3x%=—%+§=Oby R 42 If

d(v)=3 and f=[vv1v2]=(3,4,4+) and N(v) ={v,v,,v3} by R1and R 5and by Lemma2.13,then V isa

, 3 18 7 5 . .
3-full-poor vertex. So, ch'(v) =ch(v)+ g e % -5 + 5 =0 by R 5. Then, if v; is a 4-poor vertex, then

1 2
v, is incident with 4-face, 6" — face and 8" — face. So, for d(v) >4, ch'(v) = ch(v) + 2 + % + 2—; —1>0byR

1
9 and R 5. Here, for 3-face, Ch'(f)zch(f)+§+2lo+l>0 R3.2and R5andR9.

For d(v)=4, if fi=[ww,], f;=[vwxv,]and foand fyare 8" —faces with
d(v;)=d(v,)=3,then v is a 4-semi-poor vertex by R 1 and R 6. If v is a 4-semi-poor vertex I, then

ch’'(v)=ch(v)+— +2X§—%=—1+%+%—%>0 by R 6.1. For d(v,;) =3, we must have d(v,) =4. So,

ch'(v1)=ch(v1)+§+%+§=0byR6.1.1 and R 9. Then f =[vvv,], ch’(f)=ch(f)+%+1—%>0byR

61, R 611 and R 9. For d(vy)=3, if v, is incident with [ =(3,4,5)—face, then
2

ch'(v4) zch(v4)+§+§+§ >0 by R 6.1.1 and R 10. If Vv is a 4-semi-poor vertex II, then

ch'(v)=ch(v)+— +2x§—§=—1+

1 9 3
2 3 + 173 =0 by R6.2. For d(v,) =3, if the outer neighbor of v, is 4-

2 39
semi-poor vertex, then ch'(v,) = ch(v,)+ 3 + 2 + 3 >0 by R 6.2.2. For d(v,) =3, if the outer neighbor of v,
_ , 1 3 2 9
is 4-full-poor vertex, then ch'(v,) = ch(v,)+ 2 + 2 + 5 + P >0 byR6.2.2and R7.1.

1 1
If V is a 4-semi-poor vertex III, then ch (V)—Ch(v)+3+2X%—§:—1+—+%—%>ObyR63.

2 3
, 7 39
For d(v;)=3,we must have d(v,)2=4. So, ch (VI)ZCh(V1)+§+g+§>O by R 6.3.1 and R 9. Then

f=lww,], ch'(f)= Ch(f)+%+l—% >0by R 6.3, R 6.3.1 and R 10. For d(v4) =3, if v, is incident with

f =(3,4,5)—face, then ch'(v,) =ch(v,)+ % + % + % >0 by R6.3.1and R 10.
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1 9 3 1 9 3
If v is a 4-semi-poor vertex IV, then ch'(v)=ch(v)+—+2x——==—-1+—+——==0 by R
4 8 2 3 4 2

2 39
6.4. For d(v,) =3, if the outer neighbor of v, is 4-semi-poor vertex, then ch'(v,) =ch(v,)+ 3 + 2 + P >0 by
R 642 For d(vy)=3, if the outer neighbor of v, is 4-full-poor vertex, then

1 3 2 9
h' =ch +—+=—4+=4+—=2>20 byR6.4.2andR7.1.
ch'(vy) = ch(vy) 27357 y an

For d(v)=4, if fi=[waxv,], f;=[vyv,] and f, and f, are 8 —faces with

d(vy)=d(v,)=3,then v is a 4-full-poor vertex by R 1 and R 7. If v is a 4-full-poor vertex I, then
, 1 9 2 9 4 _

ch (v):ch(v)+§+2><§—2><g:—1+Z—g>0 by R 7.1. For d(v;)=d(v,)=3,if vjand v, are

1 2
incident with f =(3,4,5), then ch'(v)zch(v)+§+§+§+%>0 by R 7.1.1 and R 11 (where Vv is

represented by v and V) If v is a  4-full-poor vertex  II,  then

1 2 1 1 3
ch'(v)zch(v)+§+2><§—§—g=—l+§+%—g>0 by R 7.2. For d(v,) =3, if the outer neighbor of v,

1 1 2
is 4-semi-poor vertex, then ch'(v,) =ch(v,)+ > + 5 + % + 3 =0 by R 7.2.2 and R 6.1. For d(v,) =3, if the

: . , I 1 1 2
outer neighbor of v, is 4-full-poor vertex, then ch'(v,) = ch(v,) + 2 + 5 + 5 + B + 3 =0 byR7.22andR7.1.

For d(v)=3, by R1 and R 8, if v is incident with 3-face, 4-face and 8" —face, then V is a T3 -

vertex. Let f = vy, ] = (3,4, 4+) — face. Here, v is T 3 _ vertex and we can get vy is a 4-semi-poor vertex and
, 1 9 9 , 3 9

v, 24 and so ch'(v) ZCh(V)+Z+§+§:O by R 8.1, R6 and R 9. Then ch (f)=ch(f)+5+l—§>0

by R8.1,R6and R9.

For d(v)=4, by R1and R 8, if v is incident with two 3-faces, one 4-face and one 8" — face,

then v is a T%— vertex. Let fi=lvwv,] and f3 =[vvsv,], f, be 4-face and f, is 8" —face. So,

ch’(v)zch(v)+i+%—2><§=0 by R 82. Let f;=/3=(3,4,5). If v is a T* — vertex, then

ch’(f)zch(f)+§+%—§<0 by R 8.2, R 10 or ch'(f)zch(f)+§+%—%<0 by R 8.2, R 3.1. So, it is

impossible that 7’ * _ Vertex is adjacent to 3-vertex. |
Lemma 3.2 Let f; =[vwV,] and f5 =[vv3v,], f, be4-face and f; is 8" —face. If v isa T — vertex,
then the neighbor vertices of V are 4" — vertex.

For d(v) =5, by R1and R 8, if v is incident with two 3-faces, one 4-face and two 5% —face, then V is

a T° —vertex. Let f; =[] and f3 =[vwyv,], f, be 4-face and f, and f5 are 5 —faces. So,

ch'(v)=ch(v)+i+2x%—2x%:0 by R 83. For f, and f,, if v is a T° —vertex, then

ch’(f)=ch(f)+%+l—%<0 by R 83, R 9 and R 3.1 or ch'(f)zch(f)+%+%—%<0 by R 8.2, R 3.1
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7 39
and R 10. So, it is impossible that 7> — vertex is adjacent to 3-poor vertex. Then ch'(f) = ch(f)+— 2 +=— 3 >0

7 9
by R 8.2, R10 and c/h'(f)= Ch(f)+§+l—§ <0 by R 8.2, R 9. Therefore, if v is T° —vertex adjacent to
T3 —vertex, then f =(5,3,5") — face.

Lemma 3.3 In G, let v be a T —vertex in which f; =[vwv,] and f3 =[vv;v,], f, be4-face and f5 be

5% —faces. Ifa T —vertex is adjacent to T — vertex, then fi=/,=(5,3,5")—face.

Moreover, if Vv isa T a(v) — vertex, where d(v) =6 and d(v) is even, by Lemma 2.15, then V is incident at most

\\_d(;)J 3-faces, at most [@J 4-faces and at most lr@—‘ 8" —faces. So, by R1and R 8,

R ()2 ch(v)+> (( d(v)}) 4([0’(\/) J)_53d(v)—224{d(v)J

4 4 16d(v) 2

_ gd(v)_7 +(3d(v)—‘+[2d(v)J _ 53d(v)-224 V(v)J
2 32 32 16d(v) 2

_53d(v)-224 53d(v)-224 V(V)J S

- 32 16d(v) 2 |

by R 8.4.1.

It visa 79 —vertex (d(v)>7, d(v)=4n+3, where n=1,2,...) by R 8.4.2 and by Corollary
2.16, then

ch' () > ch(v)+2 (d(v) i )+ 4(L@J)+2X%_(5261122(;)194)V(2V)J
d() " 3d(v) V(V)JJrg_i_szd(v)—194[d(v)J
32 16 | 5 32 16d(v) 2
_5ld(v) J{d(v)J_ 973 52d(v)-194 V(V)J
32 16 | 160 16d(v) 2
_265d(v)-973 _52d(v)-194
160 32
265d(v)-973  260d(v)-970
160 160

>0

it visa 79 —vertex (d(v)=29,d(v)=4n+5, wheren=1,2,...) by R 8.4.3 and by Corollary
2.17, then

@]International Journal Of Progressive Research In Engineering Management And Science Page | 328



e-ISSN :

&( w INTERNATIONAL JOURNAL OF PROGRESSIVE 2583.1062

1JPREMS RESEARCH IN ENGINEERING MANAGEMENT

A —/ AND SCIENCE (IJPREMS) Impact
Factor:

Wwww.ljprems.com Vol. 04, Tssue 09, September 2024, pp: 312-330 5.725

editor@ijprems.com

ch'(v) = ch(v)+= (d(V) i) 4(L@J)”X%_(5261’(62(;)202){61(;%

d() 5, 3d0) V(V)J+§_£_52d(V)_202V(V)J
32 16 | 5 32 16d(v) 2

_51d(v) +V@)J 1018 52d(v)-202 V@)J

32 16 160 16d(v) 2
< 265d(v)—1018 3 52d(v)—202
160 32
_ 265d(v)-1018  260d(v)—1010 50
160 160
If v is a 4-light vertex, then f =[v,v,v]=(3,3,4)—face by R1 and R2.1 and R 5. If v, and v, are 3-

full-poor vertices, then ch'(f)=ch(f)+1 +%+ 210 =2d(f)-T+ i—é > (. By Lemma 2.9, when d(f) =4,

1 1
f sends 7 to each 4-light vertex. ch'(f)=ch(f) —4><Z =0 by R 2.1 and R 1. Suppose d(f)=3 with

f=[n,»]=3,4,5) —face. By Lemma 2.8 and R 3, if v, Vv, and Vyare poor vertices, then

ch(f)—ch(f)+;+§—%—2d(f) 7+;>O by R3.1,R3.2and R3.3. By R10, if v, Vv, and v; are not

poor vertices, then ch'(f)=ch(f)+%+l—%=2d(f)—7+1§1>0. For d(f)=4, by Lemma 2.11,

ch'(f)zch(f)—%—%=2d(f)—7—%<0 by R3.2, R 4.1 and R 6.1. So, Lemma 2.11 is true.

We have that G is simple, has neither adjacent triangles nor 7-cycles and O(G) >3, the following lemma is
obvious. This completes the proof of Theorem 1.1.
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