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ABSTRACT 

Fine particulate matter (PM2.5) poses significant health risks due to its ability to penetrate the respiratory system and 

bloodstream, originating from anthropogenic and natural sources. Accurate hourly forecasting is essential for public 

health warnings and emission control. This study develops a hybrid model for hourly PM2.5 concentration prediction 

using Seasonal-Trend decomposition via LOESS (STL) to separate data into trend, seasonal, and residual components. 

Data from Talkatora, Lucknow (India), collected via the Central Pollution Control Board, underwent preprocessing 

including missing value imputation and outlier removal. The trend component was forecasted with Linear Regression 

(LR) using 24-hour lags, the seasonal component with eXtreme Gradient Boosting (XGB) also incorporating 24-hour 

lags, and the residual with Long Short-Term Memory (LSTM) neural network (64 cells, Adam optimizer, MSE loss). 

Forecasts were aggregated for final predictions. The model was compared against standalone LR, XGB, LSTM, and 

STL variants using MAE, RMSE, Pearson's correlation coefficient r, and R² on test data. Results showed the hybrid 

STL-XGB-LR-LSTM model outperformed others, achieving MAE of 8.4736, RMSE of 13.0953, r of 0.9541, and R² 

of 0.9098, indicating superior accuracy in capturing temporal patterns. This approach enhances PM2.5 forecasting for 

proactive environmental management. 

Keywords: Forecasting; PM2.5, STL Decomposition, Machine Learning, Deep Learning. 

1. INTRODUCTION 

Fine particulate matter (PM2.5), comprising particles with an aerodynamic diameter less than 2.5 micrometres, is a 

critical air pollutant with significant implications for public health and environmental sustainability. Due to their small 

size, PM2.5 particles penetrate deep into the respiratory system and bloodstream, exacerbating global morbidity and 

mortality. Accurate forecasting of PM2.5 concentrations is vital for mitigating exposure risks, issuing timely public 

health warnings, and shaping effective policy interventions to reduce emissions and protect vulnerable populations [1]. 

PM2.5 originates from both primary and secondary sources. Primary emissions are generated by anthropogenic 

activities, including vehicular exhaust, industrial processes, coal combustion, and biomass burning, as well as natural 

sources such as dust storms and wildfires. Secondary PM2.5 forms through atmospheric chemical reactions involving 

precursor gases like sulfur dioxide (SO2), nitrogen oxides (NOx), and volatile organic compounds (VOCs). In regions 

like central Bangladesh, studies using positive matrix factorization (PMF) and self-organizing maps (SOM) have 

identified significant correlations between PM2.5 and pollutants such as NO2, black carbon, and methane, highlighting 

contributions from brick kilns, urban density, and traffic [2]. These sources are particularly pronounced during dry 

seasons, intensifying regional pollution levels. The health effects of PM2.5 are extensive, driven by mechanisms 

including oxidative stress, inflammation, cytokine release, DNA damage, altered gene expression, and apoptosis. 

Short-term exposure is associated with aggravated respiratory symptoms, cardiovascular events, and increased hospital 

admissions, while long-term exposure contributes to chronic conditions such as cardiopulmonary diseases, 

neurological disorders, and elevated mortality risks [3]. Time-series studies indicate that PM2.5 has a stronger 

association with respiratory morbidity, such as asthma exacerbations and pneumonia, than cardiovascular outcomes in 

short-term scenarios, with children, the elderly, and individuals with pre-existing conditions being particularly 

vulnerable [4]. Due to the aforementioned health effects of PM2.5 there is an urgent need for effective mitigation 

strategies. Forecasting PM2.5 concentrations enables proactive measures to prevent exceedances of safety thresholds, 

such as the World Health Organization’s 15 μg/m³ daily limit. 

Various studies have demonstrated the effectiveness of machine learning models (MLMs) in forecasting PM2.5 

concentrations. For example, MLMs have been used to predict PM2.5 levels in Quito, Ecuador [5]. In Taiwan, one 

study found that Gradient Boosting Regressor (GBR) outperformed several other models, including Linear 

Regression, Random Forest (RF), and K-Nearest Neighbours (KNN) [6]. Deep learning models have also been 

extensively used for this purpose. A Multi-Layered Perceptron (MLP) has been used for both PM10 and PM2.5 
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predictions [7]. In South Korea, an interpolated Convolutional Neural Network (CNN) was employed for hourly 

forecasts, with interpolation being used to manage imbalanced spatial data [8]. 

Another approach to improving forecast accuracy is using time series decomposition techniques, which break down 

data into components. Ensemble Empirical Mode Decomposition (EEMD) has been used to decompose PM2.5 data 

into multiple Intrinsic Mode Functions (IMFs), which were then forecasted with a General Regression Neural Network 

(GRNN) [9]. A combination of EEMD with Phase Space Reconstruction (PSR) and Least Square Support Vector 

Machine (LSSVM) has also been used for enhanced prediction [10]. 

Recent studies have improved PM2.5 forecasting by integrating STL decomposition with machine learning. The 

HISTCP framework, for instance, uses STL to break down PM2.5 data into trend, seasonal, and residual components, 

processed via moving average smoothing, least squares fitting, and an optimized linear dendritic model, respectively. 

Tested on data from five Chinese cities (2010–2015), HISTCP outperformed models like ANFIS and Transformers in 

MSE and R² [11]. Another study combined STL decomposition with CNN, BiLSTM, and attention mechanisms, 

optimized via Bayesian methods, achieving up to 30% lower RMSE on Delhi data (2019–2023) compared to non-

decomposed models [12]. 

Both above STL decomposition models were developed for daily average PM2.5 concentrations which does not 

consider the variations in the PM2.5 concentrations throughout the day. This paper aims to address this issue by 

developing a forecasting model for hourly PM2.5 concentrations based on STL decomposition and machine learning 

models. 

2. METHODOLOGY 

First hourly PM2.5 data was collected from the Central Pollution Control Board (CPCB) for the location Talkatora, 

Lucknow, Uttar Pradesh (India). After data collection, data preprocessing was done. Then STL decomposition was 

applied on the preprocessed hourly PM2.5 data to decompose the data into seasonal, trend and residual components. 

The seasonal component was then forecasted using eXtreme Gradient Boosting (XGB) with lag feature model, trend 

component was forecasted using Linear Regression (LR) with lag feature model and the residual component was 

forecasted using Long Short-Term Memory (LSTM) neural network. The individual forecasted components were then 

aggregated to get the final forecast values. The models were built and trained on the Google’s Colab platfrom. The 

proposed model was evaluated against STL decomposition-XGB, STL decomposition-LR, STL decomposition-

LSTM, XGB, LR and LSTM models in terms of mean absolute error (MAE), root mean squared error (RMSE), 

Pearson’s correlation coefficient (r) and coefficient of determination (R
2
). 

3. MODELING AND ANALYSIS 

Data Collection and Preprocessing 

Hourly PM2.5 data was collected from Central Pollution Control Board (CPCB) for the location Talkatora, Lucknow, 

Uttar Pradesh (India). Data preprocessing such as filling missing values with mean, removing and replacing outliers 

using linear interpolation was performed. Then on the processed data STL decomposition was applied to decompose 

the data into seasonal, trend and residual components. 

STL Decomposition 

Seasonal-Trend decomposition using Locally Estimated Scatterplot Smoothing (LOESS), commonly known as STL 

decomposition, is a robust statistical method for analysing time series data by separating it into three distinct 

components: trend, seasonal, and residual. This approach is particularly valuable in environmental sciences, such as 

PM2.5 forecasting, where time series exhibit complex patterns driven by seasonal variations, long-term trends, and 

irregular fluctuations. STL decomposition enables enhanced modelling by isolating these components for tailored 

analysis, improving the accuracy of predictive models [11]. 

The trend component captures the long-term progression or direction in the data, such as a gradual increase in PM2.5 

concentrations due to urbanization. The seasonal component reflects recurring patterns, like seasonal pollution peaks 

during winter months due to meteorological factors or biomass burning. The residual component encompasses 

irregular, short-term fluctuations not explained by trend or seasonality, such as sudden spikes from wildfires. STL 

employs LOESS, a non-parametric regression technique, to smooth the time series iteratively, ensuring flexibility in 

handling non-linear patterns and robustness against outliers [13]. 

The STL process begins by detrending the data to isolate seasonality, followed by smoothing to estimate the seasonal 

component. The trend is then derived by removing the seasonal component and smoothing the remainder. Finally, 

residuals are calculated as the difference between the original series and the sum of trend and seasonal components. 
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This additive decomposition assumes the time series can be expressed as: Y(t) = T(t) + S(t) + R(t), where Y(t) is the 

observed data, T(t) is the trend, S(t) is the seasonal component, and R(t) is the residual [1]. 

eXtreme Gradient Boosting (XGB) 

XGB is a powerful machine learning algorithm that leverages gradient boosting to build predictive models, 

particularly effective for time series forecasting tasks like PM2.5 prediction. It constructs an ensemble of decision trees 

iteratively, where each tree corrects the errors of its predecessors by minimizing a loss function through gradient 

descent. XGB’s strengths include its scalability, handling of non-linear relationships, and robustness to noisy data, 

making it suitable for complex environmental datasets [14]. All the XGB models developed for this study uses 24-

hour lag features. 

In time series forecasting, lag features—past observations used as predictors—are critical for capturing temporal 

dependencies. For instance, in PM2.5 forecasting, lag features might include PM2.5 concentrations from previous hours 

or days, reflecting patterns like diurnal cycles or pollution persistence. These lagged values are incorporated as input 

variables in XGB, enabling the model to learn how historical data influences future outcomes. The algorithm 

optimizes feature importance, assigning higher weights to lags with stronger predictive power, such as recent PM2.5 

levels. 

Linear Regression (LR) 

Linear Regression (LR) is a statistical method that models the relationship between a dependent variable and one or 

more independent variables using a linear equation: Y = β0 + β1X1 + β2X2 + ... + βnXn + ε, where β coefficients 

represent the impact of predictors X on outcome Y, and ε is the error term. In time series forecasting, such as PM2.5 

concentration prediction, LR assumes linearity and independence of observations, but temporal data often violates this 

due to autocorrelation [13]. 

To address this, lag features—past values of the dependent or independent variables—are incorporated as predictors. 

This transforms LR into an autoregressive model, capturing temporal dependencies: Y t = β0 + β1Yt-1 + β2Yt-2 + ... + 

βkXt-l + εt, where t denotes time, and lags (e.g., t1, t2) reflect historical influences. In forecasting problems, lag features 

enhance accuracy by accounting for seasonal and trend patterns. All the LR models used for this study were built with 

lag feature of 24-hour lag. 

LSTM Neural Network 

Long Short-Term Memory (LSTM) networks are an advanced form of Recurrent Neural Networks (RNNs) designed 

to model sequential data with long-term dependencies, overcoming key limitations of standard RNNs. Traditional 

RNNs process sequences by updating a hidden state over time, suitable for tasks like time-series analysis or natural 

language processing. However, they struggle with vanishing and exploding gradients during backpropagation, which 

disrupts learning over extended sequences [15]. These gradient issues cause information from earlier time steps to 

either fade or amplify uncontrollably, limiting RNNs’ ability to capture distant dependencies [16]. LSTMs address 

these challenges through a sophisticated architecture featuring a cell state, which acts as a persistent memory channel 

to retain information across long sequences [17]. The cell state is regulated by three specialized gates—forget, input, 

and output—that control the flow and retention of information using sigmoid and tanh activation functions. 

The forget gate decides which parts of the cell state to discard, calculated as ft = σ (Wf · [ht - 1, xt] + bf), where σ 

denotes the sigmoid function, ht−1 is the prior hidden state, xt is the current input, and Wf, bf represent weights and 

biases [15]. The input gate determines what new information to incorporate, using a sigmoid layer it = σ (Wi ⋅ [ht−1, xt] 

+ bi) and a tanh layer for candidate values Čt = tanh (WC⋅[ht−1, xt] + bC). The cell state updates via Ct = 

ft⊙Ct−1+it⊙Ct, with ⊙ indicating element-wise multiplication. The output gate filters the cell state to produce the 

hidden state: ot = σ (Wo⋅[ht−1, xt] + bo), and ht = ot⊙tanh (Ct) [16]. This gated structure enables LSTMs to selectively 

retain or discard information, making them effective for tasks requiring long-range context. 

All the LSTM models used for this study were built with the same hyper parameters, i.e. number of LSTM layers is 

one, number of LSTM cells in each layer is 64, adam optimiser, mean squared error as loss function and early 

stopping with patience level 10. 

Performance Evaluation Metrics 

By comparing the performance errors, the models' prediction performance was assessed. Mean Absolute Error (MAE), 

Root Mean Squared Error (RMSE), and Coefficient of Determination (R
2
) were the quantitative evaluation metrics 

that were employed. Additionally, the linear relationship between the predicted and actual values was measured using 

Pearson's Coefficient of Correlation (r). The following are the mathematical formulas for RMSE, MAE, R
2
 and r: 
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Where Y is the predicted value and X is true value and N is the number of observations. 

4. RESULTS AND DISCUSSION 

To determine the kind of seasonality present in the PM2.5 dataset time series graph of the dataset was plotted which 

can be seen in Figure 1 below. From the graph it can be clearly inferred that yearly seasonality is present in the PM2.5 

dataset of the location Talkatora. 

 

Figure 1: PM2.5 Time Series Plot of Talkatora 

After determining the seasonality, STL decomposition was used to decompose the PM2.5 data into seasonal, trend and 

residual components. The graph of STL decomposition components along with the observed values is shown in Figure 

2.  

 

Figure 2: STL Decomposition Plot 
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The performance metrices of all the models is shown in table 1 below. 

Table 1: Performance Evaluation Metrics for all the Models 

Performance 

Metrics 

STL-XGB-LR-

LSTM 

STL-

LSTM 
STL-XGB STL-LR LSTM XGB LR 

MAE 8.4736 8.6330 10.1189 10.3234 9.0028 10.6871 10.4723 

RMSE 13.0953 13.3437 15.2220 15.4950 14.0719 16.4026 16.4075 

r 0.9541 0.9535 0.9492 0.9473 0.9489 0.9407 0.9407 

R
2
 0.9098 0.9090 0.9009 0.8973 0.8988 0.8849 0.8849 

From the above table several inferences can be made. First all the models showed good performance in forecasting 

PM2.5. The standalone LSTM model provided a good baseline for forecasting, showing a relatively strong correlation 

between true and predicted values. The LR model, using a simple lagged feature, also demonstrated a strong positive 

linear relationship and a reasonable R
2
 score, suggesting the immediate past value is a significant predictor. Similar to 

LR, the XGB model with a lagged feature performed well, indicating the effectiveness of tree-based models on this 

dataset with this feature. Of the three standalone models LSTM was the best performer with low MAE and RMSE and 

higher r and R
2
 values as can be seen from table 1. 

Models which used STL decomposition and a single forecasting method to forecast the all the components separately 

and adding them to get the final forecast showed remarkable improvement in the performance than their standalone 

counterparts. Forecasting each component with separate LSTM models and combining them resulted in a notable 

improvement in performance compared to the standalone LSTM model, as indicated by lower MAE and RMSE, and 

higher Pearson’s correlation coefficient r and R
2
 scores. This suggests that modelling the components separately 

helped capture the underlying patterns more effectively. Using LR to forecast each component after STL 

decomposition also yielded a better performance than the standalone LR model, demonstrating the benefit of 

decomposing the time series. Of the three STL-LSTM, STL-XGB and STL-LR models, the STL-XGB model was the 

worst performer. 

The hybrid approach, the STL-XGB-LR-LSTM model, utilizing different models for each component based on their 

characteristics, resulted in the best performance among all evaluated models, achieving the lowest MAE and RMSE, 

and the highest Pearson correlation and R2 scores. This suggests that tailoring the forecasting model to the specific 

nature of each component (e.g., using a model good at capturing non-linearities for the residual) can lead to improved 

overall forecasting accuracy. The graph of the predicted values vs the true values is shown in Figure 3. The plot of true 

vs. predicted values visually shows that there is a strong linearity between the true values and the forecasted values 

indicating good model performance. The dotted red line in the graph shows the perfect forecast.  

 

Figure 3: STL-XGB-LR-LSTM model's Forecasted vs True values plot 

5. CONCLUSION 

Based on the evaluation metrics, the hybrid forecasting approach combining STL decomposition with LR for the 

trend, XGB for the seasonal, and LSTM for the residual component provided the most accurate forecasts for the PM2.5 
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dataset of Talkatora. Decomposing the time series into its constituent parts and applying models suited to the 

characteristics of each component proved to be a highly effective strategy. 
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