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ABSTRACT

Fine particulate matter (PM, ;) poses significant health risks due to its ability to penetrate the respiratory system and
bloodstream, originating from anthropogenic and natural sources. Accurate hourly forecasting is essential for public
health warnings and emission control. This study develops a hybrid model for hourly PM, s concentration prediction
using Seasonal-Trend decomposition via LOESS (STL) to separate data into trend, seasonal, and residual components.
Data from Talkatora, Lucknow (India), collected via the Central Pollution Control Board, underwent preprocessing
including missing value imputation and outlier removal. The trend component was forecasted with Linear Regression
(LR) using 24-hour lags, the seasonal component with eXtreme Gradient Boosting (XGB) also incorporating 24-hour
lags, and the residual with Long Short-Term Memory (LSTM) neural network (64 cells, Adam optimizer, MSE loss).
Forecasts were aggregated for final predictions. The model was compared against standalone LR, XGB, LSTM, and
STL variants using MAE, RMSE, Pearson's correlation coefficient r, and R2 on test data. Results showed the hybrid
STL-XGB-LR-LSTM model outperformed others, achieving MAE of 8.4736, RMSE of 13.0953, r of 0.9541, and R?
of 0.9098, indicating superior accuracy in capturing temporal patterns. This approach enhances PM, 5 forecasting for
proactive environmental management.
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1. INTRODUCTION

Fine particulate matter (PM,s), comprising particles with an aerodynamic diameter less than 2.5 micrometres, is a
critical air pollutant with significant implications for public health and environmental sustainability. Due to their small
size, PM, 5 particles penetrate deep into the respiratory system and bloodstream, exacerbating global morbidity and
mortality. Accurate forecasting of PM,5 concentrations is vital for mitigating exposure risks, issuing timely public
health warnings, and shaping effective policy interventions to reduce emissions and protect vulnerable populations [1].
PM, s originates from both primary and secondary sources. Primary emissions are generated by anthropogenic
activities, including vehicular exhaust, industrial processes, coal combustion, and biomass burning, as well as natural
sources such as dust storms and wildfires. Secondary PM, s forms through atmospheric chemical reactions involving
precursor gases like sulfur dioxide (SO,), nitrogen oxides (NOXx), and volatile organic compounds (VOCs). In regions
like central Bangladesh, studies using positive matrix factorization (PMF) and self-organizing maps (SOM) have
identified significant correlations between PM, 5 and pollutants such as NO2, black carbon, and methane, highlighting
contributions from brick kilns, urban density, and traffic [2]. These sources are particularly pronounced during dry
seasons, intensifying regional pollution levels. The health effects of PM,5 are extensive, driven by mechanisms
including oxidative stress, inflammation, cytokine release, DNA damage, altered gene expression, and apoptosis.
Short-term exposure is associated with aggravated respiratory symptoms, cardiovascular events, and increased hospital
admissions, while long-term exposure contributes to chronic conditions such as cardiopulmonary diseases,
neurological disorders, and elevated mortality risks [3]. Time-series studies indicate that PM,s has a stronger
association with respiratory morbidity, such as asthma exacerbations and pneumonia, than cardiovascular outcomes in
short-term scenarios, with children, the elderly, and individuals with pre-existing conditions being particularly
vulnerable [4]. Due to the aforementioned health effects of PM,5 there is an urgent need for effective mitigation
strategies. Forecasting PM, 5 concentrations enables proactive measures to prevent exceedances of safety thresholds,
such as the World Health Organization’s 15 pg/m? daily limit.

Various studies have demonstrated the effectiveness of machine learning models (MLMs) in forecasting PM,s
concentrations. For example, MLMs have been used to predict PM, s levels in Quito, Ecuador [5]. In Taiwan, one
study found that Gradient Boosting Regressor (GBR) outperformed several other models, including Linear
Regression, Random Forest (RF), and K-Nearest Neighbours (KNN) [6]. Deep learning models have also been
extensively used for this purpose. A Multi-Layered Perceptron (MLP) has been used for both PM,, and PM,5
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predictions [7]. In South Korea, an interpolated Convolutional Neural Network (CNN) was employed for hourly
forecasts, with interpolation being used to manage imbalanced spatial data [8].

Another approach to improving forecast accuracy is using time series decomposition techniques, which break down
data into components. Ensemble Empirical Mode Decomposition (EEMD) has been used to decompose PM, s data
into multiple Intrinsic Mode Functions (IMFs), which were then forecasted with a General Regression Neural Network
(GRNN) [9]. A combination of EEMD with Phase Space Reconstruction (PSR) and Least Square Support Vector
Machine (LSSVM) has also been used for enhanced prediction [10].

Recent studies have improved PM,s forecasting by integrating STL decomposition with machine learning. The
HISTCP framework, for instance, uses STL to break down PM, 5 data into trend, seasonal, and residual components,
processed via moving average smoothing, least squares fitting, and an optimized linear dendritic model, respectively.
Tested on data from five Chinese cities (2010-2015), HISTCP outperformed models like ANFIS and Transformers in
MSE and Rz [11]. Another study combined STL decomposition with CNN, BiLSTM, and attention mechanisms,
optimized via Bayesian methods, achieving up to 30% lower RMSE on Delhi data (2019-2023) compared to non-
decomposed models [12].

Both above STL decomposition models were developed for daily average PM,s concentrations which does not
consider the variations in the PM,5 concentrations throughout the day. This paper aims to address this issue by
developing a forecasting model for hourly PM, s concentrations based on STL decomposition and machine learning
models.

2. METHODOLOGY

First hourly PM, 5 data was collected from the Central Pollution Control Board (CPCB) for the location Talkatora,
Lucknow, Uttar Pradesh (India). After data collection, data preprocessing was done. Then STL decomposition was
applied on the preprocessed hourly PM, s data to decompose the data into seasonal, trend and residual components.
The seasonal component was then forecasted using eXtreme Gradient Boosting (XGB) with lag feature model, trend
component was forecasted using Linear Regression (LR) with lag feature model and the residual component was
forecasted using Long Short-Term Memory (LSTM) neural network. The individual forecasted components were then
aggregated to get the final forecast values. The models were built and trained on the Google’s Colab platfrom. The
proposed model was evaluated against STL decomposition-XGB, STL decomposition-LR, STL decomposition-
LSTM, XGB, LR and LSTM models in terms of mean absolute error (MAE), root mean squared error (RMSE),
Pearson’s correlation coefficient (r) and coefficient of determination (R?).

3. MODELING AND ANALYSIS

Data Collection and Preprocessing

Hourly PM, 5 data was collected from Central Pollution Control Board (CPCB) for the location Talkatora, Lucknow,
Uttar Pradesh (India). Data preprocessing such as filling missing values with mean, removing and replacing outliers
using linear interpolation was performed. Then on the processed data STL decomposition was applied to decompose
the data into seasonal, trend and residual components.

STL Decomposition

Seasonal-Trend decomposition using Locally Estimated Scatterplot Smoothing (LOESS), commonly known as STL
decomposition, is a robust statistical method for analysing time series data by separating it into three distinct
components: trend, seasonal, and residual. This approach is particularly valuable in environmental sciences, such as
PM, s forecasting, where time series exhibit complex patterns driven by seasonal variations, long-term trends, and
irregular fluctuations. STL decomposition enables enhanced modelling by isolating these components for tailored
analysis, improving the accuracy of predictive models [11].

The trend component captures the long-term progression or direction in the data, such as a gradual increase in PM;5
concentrations due to urbanization. The seasonal component reflects recurring patterns, like seasonal pollution peaks
during winter months due to meteorological factors or biomass burning. The residual component encompasses
irregular, short-term fluctuations not explained by trend or seasonality, such as sudden spikes from wildfires. STL
employs LOESS, a non-parametric regression technique, to smooth the time series iteratively, ensuring flexibility in
handling non-linear patterns and robustness against outliers [13].

The STL process begins by detrending the data to isolate seasonality, followed by smoothing to estimate the seasonal
component. The trend is then derived by removing the seasonal component and smoothing the remainder. Finally,
residuals are calculated as the difference between the original series and the sum of trend and seasonal components.
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This additive decomposition assumes the time series can be expressed as: Y(t) = T(t) + S(t) + R(t), where Y(t) is the
observed data, T(t) is the trend, S(t) is the seasonal component, and R(t) is the residual [1].

eXtreme Gradient Boosting (XGB)

XGB is a powerful machine learning algorithm that leverages gradient boosting to build predictive models,
particularly effective for time series forecasting tasks like PM, 5 prediction. It constructs an ensemble of decision trees
iteratively, where each tree corrects the errors of its predecessors by minimizing a loss function through gradient
descent. XGB’s strengths include its scalability, handling of non-linear relationships, and robustness to noisy data,
making it suitable for complex environmental datasets [14]. All the XGB models developed for this study uses 24-
hour lag features.

In time series forecasting, lag features—past observations used as predictors—are critical for capturing temporal
dependencies. For instance, in PM, 5 forecasting, lag features might include PM, 5 concentrations from previous hours
or days, reflecting patterns like diurnal cycles or pollution persistence. These lagged values are incorporated as input
variables in XGB, enabling the model to learn how historical data influences future outcomes. The algorithm
optimizes feature importance, assigning higher weights to lags with stronger predictive power, such as recent PM,
levels.

Linear Regression (LR)

Linear Regression (LR) is a statistical method that models the relationship between a dependent variable and one or
more independent variables using a linear equation: Y = B + B1X; + Xy + ... + BX, + &, where B coefficients
represent the impact of predictors X on outcome Y, and ¢ is the error term. In time series forecasting, such as PM;s
concentration prediction, LR assumes linearity and independence of observations, but temporal data often violates this
due to autocorrelation [13].

To address this, lag features—past values of the dependent or independent variables—are incorporated as predictors.
This transforms LR into an autoregressive model, capturing temporal dependencies: Y= Bo + B1Ye1 + BoYio + ... +
BiXt + &, where t denotes time, and lags (e.qg., ty, t,) reflect historical influences. In forecasting problems, lag features
enhance accuracy by accounting for seasonal and trend patterns. All the LR models used for this study were built with
lag feature of 24-hour lag.

LSTM Neural Network

Long Short-Term Memory (LSTM) networks are an advanced form of Recurrent Neural Networks (RNNs) designed
to model sequential data with long-term dependencies, overcoming key limitations of standard RNNs. Traditional
RNNSs process sequences by updating a hidden state over time, suitable for tasks like time-series analysis or natural
language processing. However, they struggle with vanishing and exploding gradients during backpropagation, which
disrupts learning over extended sequences [15]. These gradient issues cause information from earlier time steps to
either fade or amplify uncontrollably, limiting RNNs’ ability to capture distant dependencies [16]. LSTMs address
these challenges through a sophisticated architecture featuring a cell state, which acts as a persistent memory channel
to retain information across long sequences [17]. The cell state is regulated by three specialized gates—forget, input,
and output—that control the flow and retention of information using sigmoid and tanh activation functions.

The forget gate decides which parts of the cell state to discard, calculated as f, = o (W; - [h; - 1, x] + by), where ¢
denotes the sigmoid function, h,_; is the prior hidden state, x, is the current input, and Ws, b; represent weights and
biases [15]. The input gate determines what new information to incorporate, using a sigmoid layer i, = o (W; - [h-;, X
+ b)) and a tanh layer for candidate values C; = tanh (W¢{h,.;, x] + bc). The cell state updates via C, =
fOC,-;+i;(OC,, with © indicating element-wise multiplication. The output gate filters the cell state to produce the
hidden state: o, = o (W, [h.—;, X] + by), and h; = o;(>tanh (C;) [16]. This gated structure enables LSTMs to selectively
retain or discard information, making them effective for tasks requiring long-range context.

All the LSTM models used for this study were built with the same hyper parameters, i.e. number of LSTM layers is
one, number of LSTM cells in each layer is 64, adam optimiser, mean squared error as loss function and early
stopping with patience level 10.

Performance Evaluation Metrics

By comparing the performance errors, the models' prediction performance was assessed. Mean Absolute Error (MAE),
Root Mean Squared Error (RMSE), and Coefficient of Determination (R?) were the quantitative evaluation metrics
that were employed. Additionally, the linear relationship between the predicted and actual values was measured using
Pearson's Coefficient of Correlation (r). The following are the mathematical formulas for RMSE, MAE, R? and r:
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Where Y is the predicted value and X is true value and N is the number of observations.
4, RESULTS AND DISCUSSION

To determine the kind of seasonality present in the PM, 5 dataset time series graph of the dataset was plotted which
can be seen in Figure 1 below. From the graph it can be clearly inferred that yearly seasonality is present in the PM, s
dataset of the location Talkatora.
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Figure 1: PM, 5 Time Series Plot of Talkatora

After determining the seasonality, STL decomposition was used to decompose the PM, s data into seasonal, trend and
residual components. The graph of STL decomposition components along with the observed values is shown in Figure
2.
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Figure 2: STL Decomposition Plot
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The performance metrices of all the models is shown in table 1 below.
Table 1: Performance Evaluation Metrics for all the Models
Pef\';loertr:;:snce STLL§$EA LR I_SSTTLM STL-XGB | STL-LR | LSTM | XGB LR
MAE 8.4736 8.6330 10.1189 10.3234 9.0028 10.6871 | 10.4723
RMSE 13.0953 13.3437 15.2220 15.4950 | 14.0719 16.4026 | 16.4075
r 0.9541 0.9535 0.9492 0.9473 0.9489 0.9407 0.9407
R? 0.9098 0.9090 0.9009 0.8973 0.8988 0.8849 0.8849

From the above table several inferences can be made. First all the models showed good performance in forecasting
PM,s. The standalone LSTM model provided a good baseline for forecasting, showing a relatively strong correlation
between true and predicted values. The LR model, using a simple lagged feature, also demonstrated a strong positive
linear relationship and a reasonable R? score, suggesting the immediate past value is a significant predictor. Similar to
LR, the XGB model with a lagged feature performed well, indicating the effectiveness of tree-based models on this
dataset with this feature. Of the three standalone models LSTM was the best performer with low MAE and RMSE and
higher r and R? values as can be seen from table 1.

Models which used STL decomposition and a single forecasting method to forecast the all the components separately
and adding them to get the final forecast showed remarkable improvement in the performance than their standalone
counterparts. Forecasting each component with separate LSTM models and combining them resulted in a notable
improvement in performance compared to the standalone LSTM model, as indicated by lower MAE and RMSE, and
higher Pearson’s correlation coefficient r and R? scores. This suggests that modelling the components separately
helped capture the underlying patterns more effectively. Using LR to forecast each component after STL
decomposition also yielded a better performance than the standalone LR model, demonstrating the benefit of
decomposing the time series. Of the three STL-LSTM, STL-XGB and STL-LR models, the STL-XGB model was the
worst performer.

The hybrid approach, the STL-XGB-LR-LSTM model, utilizing different models for each component based on their
characteristics, resulted in the best performance among all evaluated models, achieving the lowest MAE and RMSE,
and the highest Pearson correlation and R2 scores. This suggests that tailoring the forecasting model to the specific
nature of each component (e.g., using a model good at capturing non-linearities for the residual) can lead to improved
overall forecasting accuracy. The graph of the predicted values vs the true values is shown in Figure 3. The plot of true
vs. predicted values visually shows that there is a strong linearity between the true values and the forecasted values
indicating good model performance. The dotted red line in the graph shows the perfect forecast.
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Figure 3: STL-XGB-LR-LSTM model's Forecasted vs True values plot

5. CONCLUSION

Based on the evaluation metrics, the hybrid forecasting approach combining STL decomposition with LR for the
trend, XGB for the seasonal, and LSTM for the residual component provided the most accurate forecasts for the PM, 5
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dataset of Talkatora. Decomposing the time series into its constituent parts and applying models suited to the
characteristics of each component proved to be a highly effective strategy.
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