

HOW DOES ARTIFICIAL INTELLIGENCE HAS DISRUPTED THE RETAIL TEXTILE SECTOR IN INDIA

Aradhyा Gupta¹

¹DPS, India.

DOI: <https://www.doi.org/10.58257/IJPREMS43816>

ABSTRACT

The integration of Artificial Intelligence (AI) has profoundly disrupted the retail textile sector in India, reshaping supply chains, consumer experiences, and business models. Traditionally dominated by fragmented networks of manufacturers, wholesalers, and small retailers, the sector is undergoing rapid digital transformation driven by AI-enabled platforms. Predictive analytics now optimize inventory management, minimizing overstock and shortages by aligning production with real-time demand. Computer vision technologies support automated quality control, reducing defects and ensuring compliance with global standards. At the consumer interface, AI-powered recommendation engines personalize shopping experiences on e-commerce and omnichannel platforms, boosting conversion rates while strengthening customer loyalty.

Further disruption arises from the adoption of conversational AI, including chatbots and virtual assistants, which provide 24/7 customer support and facilitate seamless order tracking. In-store AI solutions, such as smart mirrors and augmented reality applications, redefine experiential retailing by allowing customers to visualize products before purchase. On the supply-chain side, machine learning algorithms enable dynamic pricing, fraud detection, and route optimization for logistics. These developments have particularly benefited organized retail players, but small and medium textile enterprises are also leveraging AI-driven SaaS platforms to scale operations and access broader markets.

However, AI adoption presents challenges. High implementation costs, digital skill gaps, and concerns around data privacy hinder uniform penetration across India's heterogeneous textile sector. The reliance on algorithmic decision-making also raises concerns about transparency, bias, and job displacement in traditional retail roles. Despite these obstacles, the trajectory indicates that AI will remain a catalyst for structural change, fostering efficiency, innovation, and global competitiveness.

This paper critically analyzes the extent and modes of AI disruption in India's retail textile sector, focusing on operational efficiencies, consumer engagement, and strategic implications for stakeholders. It argues that while AI adoption deepens divides between organized and unorganized players, it simultaneously provides new opportunities for inclusive growth if complemented by policy support, skill development, and responsible AI governance.

Keywords: Artificial Intelligence, Retail Textile Sector, India, Consumer Experience, Supply Chain Optimization.

1. INTRODUCTION

Artificial Intelligence (AI) has emerged as one of the most transformative technologies of the twenty-first century, reshaping industries ranging from finance to healthcare, logistics, and retail. Defined broadly as computational systems capable of mimicking human cognition, learning patterns, and decision-making, AI has become integral to data-driven economies (Russell & Norvig, 2021). Within retail, AI enables personalization, predictive analytics, and operational optimization, disrupting traditional models of production and consumption. The textile sector, long characterized by labor-intensive processes, fragmented value chains, and fluctuating consumer demand, has begun integrating AI to improve competitiveness, efficiency, and sustainability (Choudhury & Chatterjee, 2022).

In India, the retail textile sector is both economically significant and culturally embedded. The sector contributes substantially to GDP, employment, and exports, employing over 45 million people and accounting for nearly 15% of India's export earnings (Ministry of Textiles, 2022). Historically dominated by small-scale enterprises and unorganized retailers, the industry has been undergoing rapid digital transformation, accelerated by e-commerce, consumer data analytics, and post-pandemic shifts in shopping behavior (EY, 2021). AI acts as a critical enabler of this transformation, driving innovation in areas such as automated quality control, virtual shopping experiences, inventory management, and personalized marketing.

This paper investigates the disruptive impact of AI on India's retail textile sector, emphasizing both opportunities and challenges. The introduction contextualizes the evolution of AI in retail, situates India's textile sector within global dynamics, and outlines the research scope.

AI and Retail: A Global Perspective

Globally, AI is transforming retail operations by enabling firms to move from reactive to predictive models of decision-making. Predictive analytics allow companies to forecast demand and align inventory accordingly, reducing costs associated with overstocking or shortages (Grewal et al., 2021). Computer vision technologies, integrated into manufacturing and supply chains, improve quality control and automate defect detection, significantly reducing wastage (Sermpis et al., 2020). At the consumer end, AI-driven recommendation engines, as exemplified by Amazon and Alibaba, have redefined customer engagement by analyzing vast datasets to deliver personalized shopping experiences (Shankar, 2018).

The global textile and fashion industries have also embraced AI in novel ways. Virtual fitting rooms, powered by augmented reality and AI, enable customers to “try on” clothes digitally, reducing return rates and enhancing satisfaction (McKinsey & Company, 2020). Chatbots and virtual assistants increasingly handle customer inquiries, providing round-the-clock support. In logistics, AI supports route optimization, dynamic pricing, and fraud detection, creating efficiencies across the supply chain (Davenport & Ronanki, 2018).

However, the integration of AI is not without challenges. Concerns about transparency, ethical use of consumer data, algorithmic bias, and the displacement of traditional retail jobs persist globally (Jobin et al., 2019). These concerns resonate particularly strongly in labor-intensive economies like India, where retail and textiles are crucial for livelihoods.

The Indian Textile and Retail Landscape

The Indian textile industry is one of the oldest and largest in the world, spanning handlooms, power looms, apparel manufacturing, and organized retail chains. It plays a dual role as both a domestic consumer sector and an export-driven industry. The rise of organized retail and e-commerce has shifted consumer expectations towards convenience, speed, and personalization (PwC, 2022). The COVID-19 pandemic further accelerated digital adoption, forcing retailers to adopt online channels, contactless payment systems, and AI-driven tools to remain competitive (KPMG, 2021).

AI is reshaping Indian retail textiles across three major dimensions: production, supply chain, and consumer engagement. On the production side, AI-powered quality inspection systems reduce manual errors, ensuring consistency in large-scale manufacturing (Choudhury & Chatterjee, 2022). In supply chain management, machine learning algorithms forecast demand patterns based on seasonal, regional, and demographic data, minimizing inventory risks. At the consumer interface, e-commerce platforms like Myntra, Ajio, and Flipkart deploy AI-based recommendation engines and chatbots to personalize experiences and retain customers (EY, 2021).

Yet, India's textile sector faces structural challenges in adopting AI. High implementation costs, lack of digital literacy among small and medium enterprises (SMEs), and infrastructure deficits create barriers to scaling AI solutions uniformly. Moreover, the unorganized sector, which constitutes nearly 80% of textile retail, risks being left behind in the digital transition (Ministry of Textiles, 2022).

Opportunities of AI in Indian Retail Textiles

The disruptive potential of AI in India's retail textile sector can be captured in four key areas:

Inventory Management and Predictive Analytics: AI tools allow real-time demand forecasting, reducing waste and ensuring timely restocking. For example, large apparel retailers now integrate machine learning algorithms to predict regional demand variations, minimizing unsold stock.

Personalized Consumer Engagement: AI-driven recommendation engines analyze customer browsing and purchase histories to suggest tailored products, enhancing customer loyalty and boosting sales (Shankar, 2018).

Enhanced Quality Control: Computer vision systems ensure that products meet both domestic and international standards, crucial for export competitiveness.

Experiential Retailing: Smart mirrors and AR-based fitting rooms improve in-store experiences, attracting younger, digitally savvy consumers (McKinsey & Company, 2020).

Together, these applications enhance productivity, reduce operational costs, and increase market competitiveness, especially in export-oriented segments.

Challenges and Risks

Despite opportunities, the AI-driven disruption raises significant concerns. The first challenge is the digital divide between organized and unorganized retail. While large chains adopt AI seamlessly, small retailers struggle with costs and technical expertise. Second, issues of data privacy and security are particularly sensitive, as AI systems rely on large datasets of consumer information. India's evolving data protection regime, including the Digital Personal Data

Protection Act, 2023, will play a central role in shaping responsible AI adoption. Third, employment displacement remains a contentious issue. Automation in quality control, logistics, and customer service threatens traditional jobs, posing socio-economic challenges in a labor-intensive economy (Jobin et al., 2019).

Finally, algorithmic bias and transparency represent global concerns with local implications. Biased AI systems can reinforce inequities in product recommendations, credit assessments, and hiring practices in retail-related operations. Without regulatory frameworks for ethical AI, Indian consumers and businesses may face unintended harms.

Research Scope

This paper focuses on how AI has disrupted the Indian retail textile sector by analyzing applications, opportunities, and challenges. It adopts a critical lens, comparing India's experience with global trends to identify both unique features and common challenges. The scope includes:

- Evaluating the role of AI in production, supply chain, and consumer engagement;
- Identifying barriers to adoption for SMEs and unorganized retail;
- Assessing ethical and regulatory challenges; and
- Exploring policy and industry strategies for inclusive and sustainable AI adoption.

The study contributes to the broader discourse on digital transformation in emerging economies, highlighting how AI can serve as both a driver of competitiveness and a source of inequality if not regulated effectively.

2. LITERATURE REVIEW

1. Global Adoption of Artificial Intelligence in Retail

Artificial Intelligence (AI) has fundamentally transformed global retail by reshaping supply chains, consumer experiences, and managerial decision-making. Retail, which traditionally relied on manual forecasting and experiential merchandising, now leverages machine learning, natural language processing, and computer vision to achieve predictive precision and scalability (Shankar, 2018). Scholars emphasize that AI allows retailers to move from reactive models of supply and demand to predictive and prescriptive strategies (Grewal et al., 2021).

Globally, AI-enabled systems are increasingly utilized for demand forecasting, fraud detection, customer service automation, and recommendation systems (Davenport & Ronanki, 2018). For example, Amazon's predictive analytics, based on massive consumer datasets, has become a benchmark for the retail industry (Huang & Rust, 2021). Research also highlights AI's role in omnichannel retailing, where integration of offline and online channels requires sophisticated analytics to ensure seamless consumer experiences (Verhoef et al., 2021).

In fashion and apparel retail, AI has gained traction through tools like augmented reality (AR) and smart fitting rooms, which allow customers to virtually "try on" clothes before purchasing (McKinsey & Company, 2020). Such innovations not only enhance customer engagement but also reduce product returns, a significant cost burden for online fashion retailers.

However, scholars caution that AI adoption in retail remains uneven across geographies. Developed economies like the United States, Japan, and Western Europe lead in AI integration, while developing countries lag due to cost barriers, infrastructure gaps, and lack of digital literacy (Gupta & Kohli, 2019). This uneven adoption is particularly relevant for India, where retail textiles remain dominated by small-scale enterprises.

2. AI in Textile Manufacturing and Supply Chains

The textile sector, traditionally considered labor-intensive, has seen AI applications in manufacturing, quality control, and supply chain optimization. Studies emphasize that AI-driven automation reduces production errors and enhances operational efficiency (Choudhury & Chatterjee, 2022). Computer vision systems are now widely used for defect detection in fabrics, improving quality standards and reducing manual inspection times (Kamble et al., 2020).

Machine learning also enables predictive maintenance of textile machinery, reducing downtime and increasing productivity (Mishra & Mahapatra, 2019). These technologies align with the broader Industry 4.0 framework, where IoT, robotics, and AI converge to create smart factories (Lasi et al., 2014).

In global supply chains, AI facilitates real-time tracking, dynamic pricing, and demand-supply alignment. Research by Choi et al. (2020) suggests that AI improves resilience in textile supply chains by predicting disruptions and optimizing logistics routes. With rising global scrutiny on sustainability, scholars note that AI can also track resource consumption and monitor compliance with ethical sourcing standards (Raj et al., 2020).

Yet, barriers remain. For SMEs in textile-dominated economies, implementing AI requires high upfront investments, and the returns are not always immediate (Shen, 2020). Moreover, the introduction of AI in manufacturing raises concerns about labor displacement, especially in economies like India, where textiles employ millions.

3. Consumer-Facing AI Applications in Retail

At the consumer interface, AI applications have significantly redefined retailing. Recommendation engines—analyzed extensively in the literature—use collaborative filtering and deep learning to predict consumer preferences (Jannach et al., 2016). These tools not only enhance customer experience but also boost conversion rates.

Conversational AI, including chatbots and virtual assistants, has emerged as a dominant retail tool. Research shows that AI chatbots improve customer satisfaction by providing 24/7 assistance, though they also face criticism for lacking the empathy of human interaction (Grewal et al., 2021).

Augmented reality and smart mirrors are central to experiential retail. Studies suggest that virtual fitting rooms reduce return rates by allowing customers to visualize products before purchase (Poushneh, 2018). In India, platforms like Myntra have already adopted AI-based style recommendations and AR trials, reflecting this global trend (EY, 2021).

A recurring theme in literature is trust and privacy. While AI personalizes shopping, it relies heavily on consumer data. Researchers emphasize that without robust data protection laws and transparent algorithms, consumer trust may erode (Jobin et al., 2019). In this respect, India's recently enacted Digital Personal Data Protection Act, 2023, will significantly shape the trajectory of consumer-facing AI applications.

4. Ethical, Regulatory, and Socio-Economic Concerns

Beyond efficiency, AI raises profound ethical and social concerns. Scholars argue that algorithmic bias can reinforce inequalities in access to products, credit, and services (O'Neil, 2016). Transparency in algorithmic decision-making remains a challenge, with many AI models functioning as “black boxes” (Burrell, 2016).

From a socio-economic perspective, labor displacement is a dominant theme. Automation threatens low-skilled retail and manufacturing jobs, leading to what scholars call the “future of work” dilemma (Frey & Osborne, 2017). In textile industries, where manual labor dominates, this issue becomes especially acute.

Regulatory scholarship highlights the importance of governance frameworks for ethical AI. Jobin et al. (2019) surveyed global AI ethics guidelines and noted significant divergence, with many countries still lacking enforceable regulations. In India, AI governance remains in its infancy, with fragmented guidelines across ministries. Conversely, Canada and the EU have advanced structured frameworks balancing innovation with accountability (Bathaee, 2018).

5. India-Specific Literature on AI in Retail Textiles

Scholarly work on AI in India's textile sector has expanded in recent years. Choudhury and Chatterjee (2022) argue that AI offers Indian textiles opportunities in quality assurance, predictive analytics, and customer engagement but warn that adoption is largely confined to organized retail players. The unorganized sector, which constitutes nearly 80% of retail textiles, faces significant entry barriers.

Industry reports emphasize that AI-driven platforms are reshaping e-commerce in India. According to EY (2021), retailers like Myntra and Ajio deploy AI-powered recommendation engines, while Flipkart integrates natural language processing for multilingual customer support. These studies suggest that Indian consumers increasingly expect personalized shopping, pushing retailers towards AI integration.

Governmental perspectives highlight both opportunities and risks. The Ministry of Textiles (2022) acknowledges AI's potential to enhance global competitiveness but emphasizes the need for upskilling the workforce to mitigate job losses. Scholars also note that India's textile exports face pressure from compliance with international sustainability norms, where AI can play a role in monitoring environmental and ethical standards (Raj et al., 2020).

Yet, significant challenges persist. Mishra and Mahapatra (2019) highlight infrastructural deficits and high implementation costs. Scholars further caution that India's fragmented data protection regime may undermine consumer trust in AI-driven retail platforms.

6. Gaps in the Literature

While scholarship on AI in global retail is well-developed, literature on India's retail textile sector remains relatively nascent. Three gaps are evident:

Limited focus on unorganized retail: Most studies emphasize large retailers and e-commerce platforms, leaving out SMEs and traditional textile businesses that dominate India's sector.

Insufficient empirical work: Much of the Indian literature relies on case studies and industry reports rather than large-scale empirical research.

Neglect of socio-economic implications: While AI's efficiency gains are well-documented, its implications for employment, labor rights, and income distribution in India's labor-intensive textile sector remain underexplored.

Addressing these gaps is essential for creating a holistic understanding of AI's disruption in India's retail textiles.

Objectives

1. To critically analyze how Artificial Intelligence disrupts operational, consumer-facing, and supply-chain practices in India's retail textile sector.
2. To evaluate the challenges and opportunities of AI adoption in India's retail textiles, with a focus on inclusivity, efficiency, and sustainable growth.

3. RESEARCH METHODOLOGY

This study adopts a qualitative and analytical research design to critically examine how Artificial Intelligence (AI) has disrupted India's retail textile sector. Secondary data forms the primary basis of analysis, drawing from peer-reviewed journal articles, industry reports, government publications, and case studies to capture both global and India-specific perspectives. Academic databases such as Scopus, Web of Science, and Google Scholar, alongside industry sources like EY, PwC, and McKinsey reports, were systematically reviewed. The methodology applies a thematic analysis framework, categorizing findings into manufacturing, supply chain, consumer experience, and socio-economic implications. Comparative insights are incorporated from international studies to contextualize India's unique challenges and opportunities. No primary surveys or interviews were conducted; instead, the focus remains on synthesizing existing empirical evidence and theoretical contributions. This approach ensures a comprehensive and critical understanding of AI's transformative role, while identifying research gaps that can inform future field-based studies.

Analysis

The analysis of Artificial Intelligence (AI) in India's retail textile sector requires a systematic exploration of four major dimensions: manufacturing processes, supply chain dynamics, consumer experience, and socio-economic implications. Drawing from secondary data, this section integrates scholarly literature, industry reports, and policy perspectives into a thematic framework. Tables are provided to consolidate evidence, followed by interpretative discussions to ensure clarity and critical depth.

1. AI in Textile Manufacturing

AI has become increasingly central in India's textile manufacturing, particularly in areas like quality control, predictive maintenance, and resource optimization.

Table 1: AI Applications in Textile Manufacturing

AI Application	Key Benefits	Evidence from Literature	Indian Examples
Computer Vision for Defect Detection	Reduces human error, improves quality consistency	Choudhury & Chatterjee (2022) highlight efficiency gains	Arvind Mills uses AI-based defect detection
Predictive Maintenance	Minimizes downtime, increases productivity	Mishra & Mahapatra (2019) emphasize reduced costs	Raymond Limited piloting predictive maintenance
Resource Optimization	Optimizes water/energy use	Raj et al. (2020) link AI to sustainability	Tiruppur textile clusters adopting smart monitoring

The analysis demonstrates that AI enhances operational efficiency and quality assurance. However, adoption is uneven: while large firms like Arvind and Raymond integrate AI seamlessly, small and medium enterprises (SMEs) in clusters such as Tiruppur often lack the capital and technical capacity. This creates a digital divide within India's textile industry. Furthermore, sustainability-oriented AI adoption aligns with global compliance pressures, suggesting that export-driven firms have stronger incentives than purely domestic players.

2. AI in Supply Chain Management

Supply chains in India's textile retail sector are notoriously fragmented. AI introduces predictive analytics and IoT-based monitoring to enhance resilience and transparency.

Table 2: AI in Textile Supply Chains

AI Use	Outcomes	Supporting Literature	Indian Retail Context
Demand Forecasting	Aligns production with consumer demand	Shankar (2018) – predictive models improve accuracy	Myntra, Flipkart rely on demand prediction
Logistics Optimization	Reduces transport cost/time	Choi et al. (2020) – AI enhances resilience	Delhivery uses ML for last-mile delivery
Compliance Monitoring	Ensures ethical sourcing and sustainability	Raj et al. (2020) – AI for monitoring standards	Exporters monitor carbon/water footprints

AI in supply chains has enabled Indian retailers to become data-driven rather than intuition-driven. Forecasting tools are especially valuable in managing seasonal demand, particularly in fashion cycles where consumer preferences change rapidly. Logistics AI, employed by firms like Delhivery, allows for last-mile delivery optimization, reducing costs and improving customer satisfaction. However, compliance monitoring is primarily driven by export obligations, indicating that domestic players face weaker institutional pressure. The analysis suggests that government regulations could incentivize wider sustainability adoption.

3. AI in Consumer Experience

At the consumer-facing level, AI applications focus on personalization, conversational AI, and experiential retailing.

Table 3: AI and Consumer Experience in Retail Textiles

Consumer-Facing AI	Benefits	Literature	Indian Examples
Recommendation Engines	Personalized shopping, higher conversion	Jannach et al. (2016) – predictive power	Flipkart & Ajio use AI-based suggestions
Chatbots & NLP	24/7 customer support, multilingual reach	Grewal et al. (2021) – improves service	Mynta's multilingual chatbot
AR/Smart Mirrors	Enhanced engagement, reduced returns	Poushneh (2018) – experiential retail	Tata Cliq piloting smart fitting rooms

AI applications in consumer-facing retail have reshaped the buyer-seller dynamic. Personalized recommendations and chatbots increase customer engagement and loyalty, but raise data privacy concerns. In India, the Digital Personal Data Protection Act, 2023 will play a decisive role in regulating these practices. Moreover, AR and smart mirrors, though promising, remain limited to premium retail outlets due to infrastructure costs. The digital literacy gap also hinders uptake in Tier-II and Tier-III cities.

4. Socio-Economic Implications

The adoption of AI in India's textile retail has significant socio-economic consequences.

Table 4: Socio-Economic Impacts of AI in Indian Textiles

Dimension	Positive Effects	Negative Effects	Evidence
Employment	New roles in data analysis, AI system management	Job displacement in low-skilled roles	Frey & Osborne (2017)
Inclusivity	Digital platforms enable SMEs	High entry barriers for	Choudhury &

Dimension	Positive Effects	Negative Effects	Evidence
	to scale	unorganized sector	Chatterjee (2022)
Consumer Welfare	Improved service, faster delivery	Risk of algorithmic bias, privacy breaches	Jobin et al. (2019)

AI creates a paradox: it generates high-skilled employment but displaces low-skilled labor—a particularly sensitive issue in India's labor-intensive textile sector. The inclusivity potential of AI-enabled SaaS platforms remains underutilized due to capital and training deficits in SMEs. From a consumer standpoint, AI enhances shopping convenience but also raises questions about algorithmic transparency and digital surveillance.

5. Comparative Insights: India vs. Global Trends

The global literature shows advanced adoption in developed economies, with AI embedded across all levels of retail. In India, adoption is fragmented and largely concentrated in organized retail.

Table 5: Comparative Adoption of AI in Retail Textiles

Dimension	Global Trend	Indian Trend
Manufacturing	High automation (e.g., H&M, Zara)	Selective adoption in large firms
Supply Chain	End-to-end AI integration	Fragmented, with logistics firms leading
Consumer Experience	Widespread AR/VR, personalization	Concentrated in e-commerce giants
Regulation	Structured frameworks (EU, Canada)	Nascent data protection regime

India lags behind global leaders but demonstrates high growth potential. E-commerce giants like Flipkart, Myntra, and Ajio act as AI pioneers, while SMEs remain excluded. Regulatory reforms, digital infrastructure, and skill development are essential for bridging the gap.

6. Integrated Analysis and Emerging Patterns

The thematic analysis reveals three central patterns:

Digital Divide: Large retailers and exporters benefit disproportionately, while SMEs and domestic-focused retailers lag.

Regulatory Lag: India lacks structured AI governance, unlike Canada or the EU, raising risks of consumer distrust.

Sustainability as a Driver: Export-oriented firms adopt AI for sustainability compliance, while domestic players lack similar motivation.

These findings highlight the dual nature of AI disruption: it is both a catalyst for modernization and a source of inequality within the textile retail sector.

The analysis confirms that AI disruption in India's retail textile sector is multi-dimensional, reshaping manufacturing efficiency, supply chain resilience, consumer engagement, and socio-economic structures. While large organized retailers have successfully leveraged AI, the unorganized sector struggles due to cost and skill barriers. Comparative insights underline that India's adoption trajectory remains nascent but promising. To ensure inclusive growth, reforms must target SME empowerment, regulatory clarity, and workforce upskilling.

4. FINDINGS

The analysis of Artificial Intelligence (AI) in India's retail textile sector reveals a mixed but steadily evolving landscape. The findings can be grouped into four broad domains: manufacturing processes, supply chain management, consumer experience, and socio-economic outcomes.

1. Manufacturing Improvements but Unequal Adoption

AI has shown clear benefits in textile manufacturing, particularly in areas of defect detection, predictive maintenance, and resource optimization. Large organized players such as Arvind Mills and Raymond have adopted AI-based tools to ensure higher quality standards and minimize production downtime. However, this adoption is not uniform. Smaller enterprises, especially those concentrated in textile clusters such as Tiruppur, face financial and technical barriers. As a result, AI has amplified a digital divide in Indian manufacturing, where the competitive edge lies disproportionately with large corporations.

2. Supply Chain Efficiency with Export-Driven Focus

AI has enhanced supply chain predictability and resilience through tools like demand forecasting, logistics optimization, and compliance monitoring. Indian e-commerce firms such as Flipkart and Myntra increasingly rely on AI-based demand prediction to align inventory with shifting consumer preferences, while logistics firms like Delhivery have improved last-mile efficiency using machine learning. Export-oriented textile businesses use AI to monitor sustainability and ethical sourcing, largely to comply with international standards. By contrast, domestic-oriented firms show limited engagement with compliance monitoring, highlighting that sustainability adoption is driven more by external obligations than internal practices.

3. Consumer Experience: Growing Sophistication, Emerging Concerns

On the consumer front, AI has been most visible through recommendation engines, chatbots, and augmented reality. These technologies personalize shopping and provide real-time assistance, contributing to improved satisfaction and reduced return rates. Platforms such as Myntra and Ajio exemplify the trend, while Tata Cliq has piloted smart mirrors to enhance experiential retail. However, the reliance on consumer data for personalization raises privacy and trust issues. The enactment of India's Digital Personal Data Protection Act, 2023 is expected to shape future practices, but gaps remain in enforcement and transparency.

4. Socio-Economic Consequences: Opportunities and Disruptions

AI adoption generates new opportunities for skilled employment in areas such as data science and AI systems management. At the same time, it risks displacing low-skilled labor, particularly in manufacturing and retail service roles. This dual effect is especially problematic in India, where textiles provide large-scale employment to semi-skilled and unskilled workers. Furthermore, AI-enabled platforms allow some small and medium enterprises to access broader markets, yet high costs and skill shortages prevent inclusive adoption. Thus, AI creates both prospects for modernization and risks of widening inequality.

5. Comparative Lag and Growth Potential

Compared to developed economies, India's adoption of AI in textiles is still at an early stage. Globally, retailers in Europe and North America have integrated AI extensively across manufacturing, logistics, and consumer interfaces. In India, adoption is concentrated in organized retail and e-commerce giants, while the unorganized sector remains excluded. Despite this lag, India shows strong growth potential, particularly with rising digital literacy, government-led digitalization drives, and the strategic importance of textiles to the national economy.

AI in India's retail textile sector is a double-edged transformation. It improves efficiency, enhances consumer engagement, and aligns exports with global standards, yet it also deepens inequalities between large firms and small enterprises, skilled and unskilled labor, and export-driven versus domestic-facing businesses. Unless regulatory clarity, inclusive digital infrastructure, and workforce training accompany adoption, AI risks reinforcing divides rather than enabling broad-based modernization.

5. CONCLUSION

The disruption of India's retail textile sector by Artificial Intelligence (AI) presents a paradoxical landscape of promise and challenge. On one hand, AI technologies such as predictive analytics, computer vision, chatbots, and augmented reality have enhanced efficiency, consumer engagement, and supply-chain transparency. Large firms and export-driven businesses have successfully harnessed these tools to maintain competitiveness and meet international sustainability standards. On the other hand, the benefits remain unevenly distributed, as small and medium enterprises face barriers of cost, infrastructure, and digital skills.

The findings reveal that while AI strengthens India's global positioning in textiles, it also risks entrenching socio-economic divides. Labor displacement in a sector heavily reliant on semi-skilled workers highlights the urgent need for reskilling and policy intervention. Similarly, reliance on consumer data raises questions about privacy, bias, and trust, pointing to the necessity of robust regulatory frameworks such as the Digital Personal Data Protection Act, 2023.

Comparative insights suggest that India lags behind developed economies in fully embedding AI across manufacturing, logistics, and retail. Yet, the growth potential is substantial, driven by rising digital adoption, government initiatives, and the sector's strategic role in the national economy.

In conclusion, AI is not merely a technological upgrade for India's retail textiles but a structural transformation. Its long-term benefits will depend on inclusive adoption, regulatory clarity, and skill development. If these foundations are secured, AI can act as a catalyst for sustainable, competitive, and equitable growth in one of India's most vital industries.

6. RECOMMENDATIONS

To ensure Artificial Intelligence (AI) transforms India's retail textile sector inclusively and sustainably, a set of targeted interventions is essential. First, government and industry bodies should establish capacity-building programs to reskill workers displaced by automation, ensuring smooth labor transitions. Second, financial incentives and technology-sharing platforms should be created to enable small and medium enterprises (SMEs) to adopt AI, bridging the digital divide. Third, regulatory clarity is vital: robust implementation of the Digital Personal Data Protection Act, 2023 must balance innovation with consumer privacy and trust. Fourth, sector-specific AI innovation hubs can foster collaborations between technology firms, textile producers, and academic institutions, promoting tailored solutions for Indian conditions. Finally, standardized ethical AI frameworks should guide deployment to avoid bias, reinforce sustainability goals, and promote responsible innovation. Collectively, these steps can unlock AI's transformative potential while safeguarding equity, labor, and consumer rights.

7. REFERENCES

- [1] Bathaei, Y. (2018). The artificial intelligence black box and the failure of intent and causation. *Harvard Journal of Law & Technology*, 31(2), 889–938.
- [2] Burrell, J. (2016). How the machine ‘thinks’: Understanding opacity in machine learning algorithms. *Big Data & Society*, 3(1), 1–12. <https://doi.org/10.1177/2053951715622512>
- [3] Choi, T. M., Wallace, S. W., & Wang, Y. (2020). Big data analytics in operations management. *Production and Operations Management*, 29(5), 960–981. <https://doi.org/10.1111/poms.13113>
- [4] Choudhury, S., & Chatterjee, A. (2022). Artificial intelligence in Indian textiles: Opportunities and challenges. *Journal of Textile Science and Engineering*, 12(3), 45–59.
- [5] Davenport, T. H., & Ronanki, R. (2018). Artificial intelligence for the real world. *Harvard Business Review*, 96(1), 108–116.
- [6] EY. (2021). Future of retail in India: AI and digital transformation. EY India Insights. <https://www.ey.com>
- [7] Frey, C. B., & Osborne, M. (2017). The future of employment: How susceptible are jobs to computerisation? *Technological Forecasting and Social Change*, 114, 254–280. <https://doi.org/10.1016/j.techfore.2016.08.019>
- [8] Grewal, D., Roggeveen, A. L., & Nordfält, J. (2021). The future of retailing. *Journal of Retailing*, 97(1), 1–6. <https://doi.org/10.1016/j.jretai.2020.10.001>
- [9] Gupta, A., & Kohli, A. (2019). Enterprise digitization: Trends, challenges, and opportunities. *Information Systems Frontiers*, 21(2), 239–243.
- [10] Huang, M.-H., & Rust, R. T. (2021). A strategic framework for artificial intelligence in marketing. *Journal of the Academy of Marketing Science*, 49(1), 30–50. <https://doi.org/10.1007/s11747-020-00749-9>
- [11] Jannach, D., Adomavicius, G., & Tuzhilin, A. (2016). Recommendation systems: Challenges, insights, and research opportunities. *AI Magazine*, 37(3), 67–80. <https://doi.org/10.1609/aimag.v37i3.2676>
- [12] Jobin, A., Ienca, M., & Vayena, E. (2019). The global landscape of AI ethics guidelines. *Nature Machine Intelligence*, 1(9), 389–399. <https://doi.org/10.1038/s42256-019-0088-2>
- [13] Kamble, S. S., Gunasekaran, A., & Sharma, R. R. (2020). Industry 4.0 and lean manufacturing practices for sustainable organizational performance in Indian manufacturing companies. *International Journal of Production Research*, 58(5), 1319–1337. <https://doi.org/10.1080/00207543.2019.1630772>
- [14] KPMG. (2021). Indian retail: Transitioning post COVID-19. KPMG India Report. <https://home.kpmg>
- [15] Lasi, H., Fettke, P., Kemper, H. G., Feld, T., & Hoffmann, M. (2014). Industry 4.0. *Business & Information Systems Engineering*, 6(4), 239–242. <https://doi.org/10.1007/s12599-014-0334-4>
- [16] McKinsey & Company. (2020). The state of fashion 2020. McKinsey Global Institute. <https://www.mckinsey.com>

- [17] Ministry of Textiles. (2022). Annual report 2021–22. Government of India. <https://texmin.nic.in>
- [18] Mishra, P., & Mahapatra, S. S. (2019). An empirical analysis of barriers to the adoption of Industry 4.0 in Indian manufacturing sector. *Benchmarking: An International Journal*, 26(7), 2213–2231. <https://doi.org/10.1108/BIJ-09-2018-0281>
- [19] O’Neil, C. (2016). Weapons of math destruction: How big data increases inequality and threatens democracy. Crown Publishing.
- [20] Poushneh, A. (2018). Augmented reality in retail: A trade-off between user’s control of access to personal information and augmentation quality. *Journal of Retailing and Consumer Services*, 41, 169–176. <https://doi.org/10.1016/j.jretconser.2017.12.010>
- [21] PwC. (2022). The future of retail and consumer in India. PricewaterhouseCoopers. <https://www.pwc.in>
- [22] Raj, A., Dwivedi, G., Sharma, A., & Lopes de Sousa Jabbour, A. B. (2020). Barriers to the adoption of Industry 4.0 technologies in manufacturing supply chains: A case study analysis. *International Journal of Production Research*, 58(6), 1884–1900. <https://doi.org/10.1080/00207543.2019.1631889>
- [23] Russell, S., & Norvig, P. (2021). *Artificial intelligence: A modern approach* (4th ed.). Pearson.
- [24] Sermpinis, G., Laws, J., & Karathanasopoulos, A. (2020). Machine learning in retail: A survey. *Expert Systems with Applications*, 144, 113–118. <https://doi.org/10.1016/j.eswa.2019.113118>
- [25] Shankar, V. (2018). How artificial intelligence (AI) is reshaping retailing. *Journal of Retailing*, 94(4), vi–xi. <https://doi.org/10.1016/j.jretai.2018.10.002>
- [26] Shen, B. (2020). Sustainable fashion supply chain: Lessons from H&M. *Sustainability*, 12(3), 623–636. <https://doi.org/10.3390/su12030623>
- [27] Verhoef, P. C., Broekhuizen, T., Bart, Y., Bhattacharya, A., Dong, J. Q., Fabian, N., & Haenlein, M. (2021). Digital transformation: A multidisciplinary reflection and research agenda. *Journal of Business Research*, 122, 889–901. <https://doi.org/10.1016/j.jbusres.2019.09.022>