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ABSTRACT

Human papillomavirus (HPV) integration into the host genome is a pivotal event in cervical carcinogenesis, yet the
precise genomic hotspots and their prognostic significance remain incompletely characterized. We present a machine-
learning framework that detects HPV integration signatures from sequencing and genome- annotation data, identifies
recurrent integration hotspots, and links these events to clinical outcomes. Our approach first transforms raw
integration breakpoints into structured features capturing genomic context — local gene annotations, chromatin state
proxies, repeat elements, and microhomology patterns — then applies unsupervised clustering to discover hotspot
regions and supervised models to predict patient prognosis. Feature importance and model-agnostic explainability
methods are used to interpret biological drivers behind high-risk integrations. When applied to multi-cohort integration
datasets, the framework robustly recapitulated known integration loci and revealed novel hotspot candidates enriched
near oncogenes and regulatory elements. Integrations in a subset of hotspots correlated with reduced progression-free
survival after adjusting for clinical covariates. Overall, this pipeline provides a reproducible, interpretable way to turn
integration maps into testable biological hypotheses and potential prognostic biomarkers, facilitating targeted follow- up
experimental validation and ultimately contributing to precision risk stratification in cervical cancer.

Keywords: Cervical Cancer, Human Papillomavirus, HPV Integration, Genomic Instability, Prognostic Biomarkers.

1. INTRODUCTION

Cervical cancer remains a major global health burden, and infection with high-risk human papillomaviruses (HPVSs) is
the principal etiologic factor. While persistent viral infection is necessary, the mechanism by which HPV drives
malignant transformation is multifactorial. One important mechanism is physical insertion of viral DNA into the host
genome.

One important mechanism is physical insertion of viral DNA into the host genome. Integration can disrupt or
dysregulate host genes, alter chromatin architecture, and generate fusion transcripts — all of which may accelerate
oncogenic processes. However, not every integration event contributes equally to tumor biology: many are likely
passenger events, while a smaller subset occur at genomic loci that meaningfully alter cell behavior. Distinguishing
driver hotspots from background noise is therefore critical for understanding pathogenesis and for identifying
clinically actionable biomarkers.

High-throughput sequencing and targeted enrichment approaches now provide large catalogs of HPV integration
coordinates across tumor cohorts. These datasets are heterogeneous: they vary in coverage, experimental protocol, and
clinical annotation, and integration breakpoints are often imprecise at the nucleotide level. Moreover, genomic context
is complex — integration sites are influenced by gene density, repetitive sequences, fragile sites, and three-
dimensional chromatin folding. These complexities make manual curation slow and subjective and limit
straightforward statistical approaches.

Machine learning (ML) offers a path forward by integrating diverse genomic features and learning patterns that
distinguish recurrent, biologically relevant integration events from random insertions. An effective ML pipeline for
HPV integration analysis must address several challenges: (1) robustly represent the local genomic environment
around breakpoints, (2) handle uncertainty and heterogeneity in breakpoint calls, (3) discover recurrent hotspots
without imposing overly strict positional constraints, and (4) provide interpretable outputs that can be linked to
biological mechanisms and clinical outcomes. Importantly, interpretability is essential if predictions are to be used as
biomarkers or to guide laboratory validation.

In this work we develop a comprehensive ML framework that transforms raw integration calls into rich feature
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vectors capturing sequence composition, local gene and regulatory annotations, repeat element overlaps, predicted
effects on coding sequence, and surrogate measures of chromatin accessibility and replication timing where
available.We use a two- stage strategy: unsupervised clustering and density-based hotspot detection to locate recurrent
integration regions across samples, followed by supervised modeling to associate hotspot membership and feature
combinations with clinical end points such as progression-free survival. To ensure biological transparency, we apply
model-agnostic explanation tools that rank the genomic and viral features most predictive of hotspot-associated poor
prognosis.

Key contributions of our framework are: (1) a flexible feature engineering approach that integrates multi-modal
genomic signals around integration breakpoints; (2) an unsupervised hotspot discovery algorithm resilient to breakpoint
imprecision; (3) predictive models that link integration signatures to patient outcomes while adjusting for clinical
covariates; and (4) an interpretability layer that converts model outputs into testable biological hypotheses. We
validate the approach on publicly accessible integration cohorts and show that it recovers known driver loci and also
nominates novel hotspots enriched for nearby oncogenes and regulatory elements. Finally, we discuss how this
pipeline can be incorporated into translational workflows — for example, to prioritize integrations for functional
assays or to add an orthogonal layer to existing prognostic models in cervical cancer.

CERVICAL CANCER

normal

0

early-stage
cervical cancer

O

stage Il
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Figure 1: Cervical Cancer Stage

2. REALTED WORK

Human papillomavirus (HPV) infection, particularly with high-risk types, is widely acknowledged as the principal
cause of cervical cancer. A key oncogenic event in this process is the integration of viral DNA into the host genome,
which frequently disrupts the viral E2 gene. This disruption eliminates its regulatory function and results in continuous
expression of the viral oncoproteins E6 and E7. These proteins inactivate the host tumor suppressors p53 and pRb,
leading to genomic instability, uncontrolled cell growth, and immortalization of host cells.

Over the years, research has shifted from simply identifying the presence of integration to exploring its mechanistic
patterns and consequences. Holmes et al. introduced a classification scheme describing distinct integration signatures
such as 2J-COL, 2J- NL, MJ-CL, and MJ-SC. These patterns are linked with different genomic outcomes, including
gene deletions, amplifications, and structural rearrangements. Building on this framework, several studies have
analyzed large patient cohorts to compare integration signatures across different HPV-associated cancers, including
cervical and anal cancers.

Another important line of investigation concerns the identification of recurrent integration hotspots. Genome-wide
sequencing efforts have consistently revealed frequent integrations at cancer-related loci, including MYC, TP63,
ERBB2, FHIT, and RAD51B. Such integration events may disrupt tumor suppressor genes or activate oncogenes,
thereby altering critical pathways of carcinogenesis. Recent work from the BioRAIDs study, which employed a
double-capture HPV sequencing strategy, highlighted MACROD?2 as the most common integration hotspot in cervical
cancer, introducing a new candidate gene of potential relevance to tumor progression.

The clinical significance of HPV integration remains a subject of debate. While integration is generally considered a
hallmark of cancer development, studies have reported mixed findings regarding its prognostic value. Some
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investigations link integration with adverse outcomes, while others suggest that high viral load, often associated with
specific integration mechanisms such as MJ signatures, is correlated with improved progression- free survival. Kamal
et al., through a large prospective analysis, reported that although integration signatures alone were not prognostic,
viral load served as an important predictive factor.Technological progress has been central to these discoveries. Early
studies relied on low-resolution PCR and Southern blotting, whereas next-generation sequencing (NGS) now allows
base-pair level mapping of viral-host junctions. Capture-based strategies and whole-genome approaches have
uncovered recurrent hotspots with unprecedented resolution. More recently, bioinformatics pipelines and machine
learning models have been developed to detect complex integration signatures, analyze large-scale datasets, and
predict clinical outcomes. Such advancements are enabling more robust interpretations of HPV integration in cervical
cancer biology.

Contributions of This Research

This study presents five major contributions. First, it identifies MACROD2 as a novel HPV integration hotspot,
implicating its disruption in genomic instability and cancer progression. Second, it provides prognostic clarity,
showing that while integration patterns are not predictive, high HPV copy number correlates with better survival,
making viral load a stronger clinical marker. Third, the findings are supported by a large prospective BioRAIDs cohort
of 272 patients, ensuring statistical reliability and clinical relevance. Fourth, the team developed nf-VIF, an open-
source bioinformatics pipeline, enabling reproducible and scalable HPV integration analysis for broader research use.
Finally, the study reveals a biological link between viral state and host mutations, as PIK3CA alterations were more
frequent in tumors with episomal HPV, highlighting potential virus— host interactions in cervical cancer.

3. METHODOLOGY

We propose HPV-IntegraPro, an integrated molecular profiling pipeline designed to translate HPV integration analysis
into clinically actionable insights. The system consists of three modules: (i) a wet-lab module for automated DNA
extraction, HPV genotyping, and double-capture sequencing, (ii) a bioinformatics module powered by the cloud- based
nf-VIF portal for variant calling, integration classification, and viral load quantification, and, (iii) a clinical decision-
support module that links molecular results with patient data to generate prognostic reports. By unifying laboratory
protocols, bioinformatics, and clinical interpretation, HPV-IntegraPro provides a reproducible and scalable platform for
patient stratification, prognosis, and therapy selection. It also supports personalized medicine by identifying integration
events (e.g., involving MACROD?2) that may reveal genomic instability and sensitivity to targeted therapies. Beyond
clinical use, the system enables high-resolution mapping of HPV integration sites, longitudinal tracking of viral
dynamics, and the incorporation of machine learning for predictive modeling, thereby bridging molecular research and
precision oncology.

Tutmor Sample FFPE /Frozen
Tissue

DNA Extraction HPV Genotyping
Library S .
Preparation equencing
Quality Control HPV Confirmation
Integration Copy Number
Analysis Calculation

Molecular Report

Dash board | | Decision Prognostic
Support Stratification

Figure 2: Proposed System Block
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Dataset

Draws on the BioRAIDs prospective cervical cancer cohort (NCT02428842), comprising 272 HPV-positive patients
recruited from 18 European centers. Clinical data included age, histology, FIGO stage, lymph node status, treatment,
and PIK3CA mutation status, alongside HPV features such as genotype, integration signatures, and viral load. The
cohort was balanced by age (<50: 51.5%, >50: 48.5%). Most cases were squamous cell carcinoma (84.6%), with HPV16
as the dominant genotype (57%), followed by HPV18 (13%) and HPV45 (10%). Early-stage disease (FIGO I/1l) was
seen in 75.4% of patients, while 61.4% had nodal involvement. Treatments included radiotherapy (64.7%), surgery
(19.9%), and chemotherapy (15.4%). PIK3CA mutations occurred in 32.3% of tumors. HPV integration showed
episomal (12.1%), two-junction (43%), and multiple-junction (44.9%) patterns, with MACROD2 emerging as the most
frequent hotspot. High viral copy number (>4) was linked to better progression-free survival (p=0.011).

Methods

Analyzed 272 HPV-positive cervical cancer patients from the BioRAIDs cohort (NCT02428842) across 18 European
centers. Tumor samples were collected before treatment. HPV genotyping was performed using SPF10-INNO- LiPA,
and PIK3CA mutations were identified by whole-exome sequencing (80x coverage). HPV double capture sequencing
on Hlumina platforms enriched viral DNA, and data were processed with the nf-VIF pipeline for genotyping and
integration site detection. Statistical analyses (chi-square, Fisher’s exact, Kaplan—Meier, ROC) assessed associations
between integration patterns, clinical features, and survival. Copy number variations and genomic rearrangements
were also examined, and integration sites were mapped to nearby genes and regulatory elements to identify oncogenic
hotspots.

Working Principle

The proposed system combines molecular profiling and computational analysis to investigate HPV- positive cervical
cancer. The process begins with the collection of tumor biopsy samples from patients prior to treatment initiation.
DNA is extracted from these samples to perform HPV genotyping using validated molecular assays and to carry out
whole-exome sequencing for detecting co-occurring genomic alterations, such as PIK3CA mutations, which may
influence tumor progression and therapeutic outcomes.

For high-resolution viral detection, HPV double- capture sequencing is employed. This approach uses a two-step
hybridization enrichment strategy that selectively isolates HPV DNA fragments from the host genome. Sequencing is
performed on the Illumina platform, ensuring high sensitivity and specificity in identifying viral sequences and
integration junctions.

The raw sequencing data are processed using the nf-VIF bioinformatics pipeline. This pipeline ensures rigorous
quality control, determines HPV genotypes, and maps HPV-host integration breakpoints with high precision.
Identified integration events are further categorized into biologically meaningful signatures, including episomal, two-
junction (2J), multiple-junction clustered (MJ-CL), and multiple-junction scattered (MJ-SC). Additionally, recurrent
integration hotspot regions such as MACROD?2 and TP63 are highlighted for their potential oncogenic relevance.
Together, this integrated framework enables comprehensive profiling of HPV integration signatures and their
implications in cervical cancer biology.

4. RESULT AND DISCUSSION

To measure how well the machine learning approach performed on the clinical dataset, a confusion matrix was
constructed for the classification task (Table 1). This matrix summarizes the comparison between the actual outcomes
and the predictions made by the model.

Table 1: Confusion Matrix

Predicted value Predicted Positive Predicted Negative
Actual Positive True Positive (TP) False Negative (FIN)
. False True
Actual Negative . .
Positive (FP) Negative (TN)

The confusion matrix has four outcomes: True Positives (TP) and True Negatives (TN) are correct predictions, while
False Positives (FP) and False Negatives (FN) are errors. From these, key metrics are derived: Accuracy shows overall
correctness, Precision measures the reliability of positive predictions, Recall captures how well actual positives are
detected, and the F1-score balances precision and recall. Together, these metrics provide a clear evaluation of a model’s
performance and reliability.
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Figure 3: Confusion Matrix Voting Classifier

Performance Metrics From Confusion Matrix

Accuracy: Measures the overall correctness of the model. Represents the proportion of total cases that are correctly
classified.

TP+TN

Accuracy_TP+TN+FP+FN

(€
Precision: Indicates how many of the predicated positive cases are actually positive. High Precision Reduces false
alarms.

.. TP+TN
Precision =————— 2
TP+TN+FP+FN

Recall: Measures the ability of the model to correctly identify actual positives. Critical in medical diagnosis to avoid
missing diseased patients.

TP
TP+FP

Recall=

®)

Specificity: Measures the ability to correctly identify actual negatives. Important to avoid misclassifying healthy
individuals as diseased.

TN
TN+FP

Specificity=

(4)

F1-Score: Harmonic mean of precision and recall Provides a balanced measure when there is an uneven class
distribution.

FPXFN

F1Score=2 X ————— ®)
TP+TN+FP+FN
ROC Curve and AUC (Area Under the Curve)

The Receiver Operating Characteristics (ROC) Curve is a graphical representation that illustrate the diagnostic ability
of the proposed system at various threshold settings. The curve is plotted with:

True Positive Rate (TPR):
FP

TPR=Recall= (6)
TP+FN
False Positive Rate (FPR):
_ FP
FPR_FP+TN Q)

The AUC provide a single scaler value summarizing the ROC curve.
AUC =1.0 — Perfect classification (ideal model).

AUC = 0.5 — Random guessing

AUC > 0.7 — Acceptable discrimination.

AUC > 0.8 — Excellent discrimination.

AUC > 0.9 — Outstanding discrimination.
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Result discussion

In the BioRAIDs study cohort comprising 272 HPV-positive cervical cancer patients, analysis revealed over 300
distinct HPV—chromosomal integration junctions. Among these, MACROD2 emerged as the most common hotspot,
followed by integration events near MIPOL1/TTC6 and TP63. With respect to HPV genotypes, HPV16 was
predominant (57%), whereas HPV18 (13%) and HPV45 (10%) were also frequently identified.

The integration profiles displayed considerable diversity: episomal forms accounted for 12%, while double-junction
(43% in total) and multiple-junction forms (45%) were more frequently observed. A higher occurrence of clustered
and scattered integration patterns was noted in HPV16-positive tumors. Interestingly, HPV18 and HPV45 were
consistently integrated, without episomal persistence. In contrast, episomal patterns were more common in tumors
harboring PIK3CA mutations.

From a prognostic perspective, while progression-free survival (PFS) was not significantly associated with specific
integration signatures, HPV copy number showed clinical relevance. Patients with higher copy numbers (>4)
demonstrated improved PFS, whereas those with low copy numbers exhibited poorer outcomes and were more often
linked to two- junction (2J) type integrations. Overall, these findings indicate that although HPV integration may
occur randomly, recurrent hotspots such as MACROD? are evident. Moreover, the nature of viral integration and viral
copy number could contribute to tumor progression and patient prognosis.

Result Comparison

Our machine learning model on the CESC dataset achieved high predictive accuracy (93.5%) for overall survival
classification, with perfect recall for survivors but lower recall for deceased patients (72.7%), reflecting class
imbalance. In contrast, the base paper by Kamal et al. (2021) focused on biological insights, showing that HPV
integration signatures were not directly linked to survival but that higher HPV copy number predicted better
progression-free survival. They also identified recurrent integration hotspots, particularly MACROD?2, associated with
genomic instability. While our model demonstrates strong predictive capability, its reduced sensitivity for mortality
highlights the need for incorporating biological markers. Integrating HPV copy number and hotspot integration
features into machine learning could improve sensitivity for high-risk patients.
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5. CONCLUSION

This provides a comprehensive characterization of HPV integration signatures in cervical cancer, identifying
MACROD? as a novel and recurrent integration hotspot alongside other known target genes such as MIPOL1/TTC6
and TP63. While integration patterns were not directly associated with progression-free survival, a high HPV copy
number emerged as a favourable prognostic indicator, underscoring its potential clinical relevance. The lower

@International Journal Of Progressive Research In Engineering Management And Science 758



INTERNATIONAL JOURNAL OF PROGRESSIVE e-ISSN :
IIPREMS RESEARCH IN ENGINEERING MANAGEMENT 2583-1062
\I@

AND SCIENCE (IJPREMS) Impact
WWW.ijprems.com (Int Peer Reviewed Journal) Factor :
editor@ijprems.com Vol. 05, Issue 09, September 2025, pp : 750-760 7.001

frequency of episomal HPV in cervical cancer compared to other anogenital malignancies, and its association with
PIK3CA mutations, further supports the concept that viral integration influences tumour biology and disease
progression. These findings emphasize the need for larger, multi-centre studies to validate MACROD?2’s role in
cervical carcinogenesis and to explore its potential as a biomarker for prognosis or targeted therapy.

The observed predominance of multiple-junction (MJ) integration patterns in HPV16-positive tumours highlights a
possible genotype-specific mechanism of integration. This could reflect inherent differences in viral genome structure
or replication dynamics between HPV genotypes, influencing their propensity to integrate at multiple genomic loci.
Moreover, the finding that HPVV18 and HPV45 were always integrated suggests a distinct biological behaviour for these
types, potentially linked to their oncogenic potential and clinical aggressiveness. Understanding these genotype-
specific integration tendencies could provide insight into patient stratification and risk assessment, especially in settings
where multiple high-risk HPV types co-circulate. Integrating such molecular information with clinical parameters may
enhance precision oncology approaches for cervical cancer management.
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