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ABSTRACT

This research presents a predictive maintenance system for offshore wind farms using a neural network model
implemented in MATLAB Simulink. The model utilizes vibration parameters as input features to predict the
maintenance needs of wind turbine components. The dataset used for training the neural network has been
mathematically generated, simulating the operational conditions of offshore wind farms. The model outputs a binary
label, with a label of '0" indicating no maintenance is required and a label of 1" indicating the need for maintenance. To
facilitate remote monitoring and real-time decision-making, the system is integrated with the ThingSpeak loT
platform. The predicted maintenance labels are sent to the ThingSpeak cloud server, making them accessible from any
location via the platform’s web interface. The model demonstrates exceptional performance, achieving an accuracy of
over 99%, indicating its potential for efficient and proactive maintenance in offshore wind farm operations. This work
provides a comprehensive solution to optimizing maintenance schedules, reducing unplanned downtimes, and
improving the overall reliability of offshore wind turbines.

1. INTRODUCTION

Offshore wind farms are increasingly recognized as a critical source of renewable energy, contributing significantly to
global efforts aimed at reducing carbon emissions and combating climate change. However, the maintenance of
offshore wind turbines presents significant challenges due to their harsh operating environments, remote locations, and
high operational costs. Traditional maintenance methods often lead to unplanned downtime, expensive repairs, and
suboptimal performance of the turbines, affecting the overall efficiency and profitability of wind farm operations.
Therefore, implementing effective predictive maintenance strategies is crucial to ensure the continued reliability and
optimal performance of offshore wind farms.

Predictive maintenance, which involves forecasting potential failures before they occur based on real-time data, has
emerged as an effective approach to mitigate the challenges of maintenance in offshore wind farms. By analyzing
various operational parameters of wind turbines, such as vibration, temperature, and pressure, predictive maintenance
systems can identify early signs of wear or malfunction, enabling maintenance teams to perform corrective actions
proactively. This not only helps reduce operational costs but also extends the lifespan of turbine components, thereby
enhancing the overall efficiency and sustainability of wind farm operations.

In recent years, the integration of artificial intelligence (Al) and machine learning (ML) techniques into predictive
maintenance systems has gained considerable attention. Among these, neural networks (NN) have proven to be a
powerful tool for predicting equipment failures by analyzing complex patterns in sensor data. The ability of neural
networks to learn from historical data and make accurate predictions allows them to offer valuable insights into the
maintenance needs of offshore wind turbines.

This paper presents a neural network-based predictive maintenance model specifically designed for offshore wind
farms, focusing on vibration data as the primary input for predicting maintenance requirements. The model is
developed using MATLAB Simulink, a widely used tool for simulating and designing control systems. Additionally,
the system is integrated with the ThingSpeak 10T platform, which enables the real-time transmission of maintenance
predictions to the cloud for remote monitoring and access. With an accuracy of over 99%, the proposed model
demonstrates significant potential for improving the efficiency and effectiveness of maintenance practices in offshore
wind farms.

The key contributions of this research are as follows: (1) the development of a neural network model tailored for
predicting maintenance in offshore wind turbines, (2) the use of vibration data as an indicator for maintenance needs,
(3) the integration of the model with the ThingSpeak 10T platform for cloud-based remote monitoring, and (4) the
achievement of high prediction accuracy, validating the feasibility and practicality of the approach. This work paves
the way for further advancements in predictive maintenance for renewable energy systems, contributing to the
reliability and sustainability of offshore wind farms.
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2. METHODOLOGY

Data Acquisition

The first step in developing a predictive maintenance system is acquiring the relevant sensor data. In this case,

vibrational data is collected from industrial equipment, such as motors or pumps, using accelerometers. These

accelerometers measure the vibration levels in different axes and output the data, which can be used to assess the

condition of the equipment. The data collected from these sensors is preprocessed to remove noise and irrelevant

information. The features of the vibration signals, such as frequency and amplitude, are extracted to train the

predictive maintenance model. First the dataset has been prepared, then this dataset is used to train the neural network.

Dataset

To create a simulated dataset for training a predictive maintenance model for an offshore wind turbine system, we’ll

generate data for key parameters such as wind speed, vibration levels, temperature, power output, and maintenance

status (failure label). This data will follow mathematical relationships relevant to turbine behavior, with some

randomness added to simulate real-world variability. Here’s how we’ll proceed:

Mathematical Basis for Data Generation

1. Wind Speed (wind_speed):

o Offshore wind speeds vary daily and seasonally, but for simplicity, we’ll simulate it using a sinusoidal pattern with
some random noise:

2 m.day
30

Wind Speed = 10 + 5 Sin ( ) + €wind

where:

o 10 is the base speed in m/s.

5 is the amplitude, simulating periodic variations.
€wing 1S @ small random noise term to add variability.
Vibration Level (vibration_level):

0O N O O

Vibration often increases as the turbine operates under higher wind speeds or encounters minor faults. Let’s define
it as:
Vibration level = 0.05. Vying® + €vip
where:
0.05 is a scaling factor.

o

€vip 1S random noise to simulate irregularities in vibration.
Viwing IS the wind speed
Temperature (temperature):

0O w o o

Temperature increases slightly as the turbine operates but may remain mostly stable offshore. Let’s use a base
temperature with a small fluctuation:

Temperatue = 25 + 0.1. Viying + Eemp
where:
o 25°C is the base offshore temperature.
0.1. Vyying @dds a minor effect from wind speed.
Etemp 1S random noise for variability.
Power Output (power_output):

o ~ 0o o

Power output depends on wind speed and follows a cubic relationship up to the turbine’s rated speed:
Power output = 0.5. Vyina® + €power

where:

o 0.5isa scaling factor.

O Epower adds some noise for real-world effects.

5. Failure Label (failure_label):

o For predictive maintenance, we can introduce a label that indicates failure based on high values of vibration_level
and temperature. For example:
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failure label =

1 if vibration_level > 10 or temperature = 40

(0 otherwise

o This condition simulates when maintenance is likely needed due to high vibration or temperature.
Dataset used in the predictive maintenance modelling is shown below

A
wind_speed

10.56533301
9.953463059
10.26612624
12.51078899
13.24643015
14.72518785
15.436871
13.57598224
17.52484103
14.52986606
13.97407605
14.5250315
13.72786368
11.56929762
9.728107112
10.65722364

B8 C
vibration_level temperature

5.966143475 26.9260578
5.145806671  25.41218906
5.223418373  25.51398205
8.271332652 25.2769498
8.751739103  27.16209455
10.94580632  27.63580932
1109100888  26.28175918
9.285252949  26.68587978
15.02059135  26.94688427
10.52884183  25.76124097

10.0354335  26.20075219
10.42577939 25.8009289
8.476274601  25.36235599
6.116359197 26.9787091
5.180898363  25.96969873
6.315850253 26.2910169

D

E

power_output failure_label

591.5434584
493.8736217
535.9121416
974.2641774
1152.533833
1609.388436
1844.276569
1247.479555
2677.382527
1547.415628
1367.700504
1522.027137
1284.111699
768.2395425
458.9094556
600.9471254

O O O O W= = = i O = m»mM 000 OoOOo

Figure 1: Dataset used in the predictive maintenance modelling

Neural Network Design in Simulink

Neural networks are powerful tools for pattern recognition and prediction. In this study, a feedforward neural network
is employed to predict the maintenance needs of the equipment based on the vibrational data. Simulink, MATLAB’s
graphical simulation environment, is used to design the neural network model. The neural network takes the extracted
features of the vibrational data as inputs and outputs a prediction of the maintenance level (e.g., normal, minor

maintenance, major maintenance).

The neural network is trained using labeled data, where each data point is associated with a maintenance level that
corresponds to the condition of the equipment. Training involves adjusting the weights and biases of the network to
minimize the error in the predictions. Several performance metrics, such as accuracy and confusion matrix, are used to
evaluate the model’s effectiveness. The complete model with neural network controller and the 10T integration is

shown below.

vibration_level:Value

PO
0 0 wibration_level

20 B0 25
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w
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10" o

1 100 temperature

w
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power_output

Pradicfive Maintenance Neural Network
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(O
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Figure 2: Simulink model for the predictive maintenance

10T Integration with ThingSpeak

To facilitate remote monitoring of the equipment’s health, the output of the neural network is sent to ThingSpeak, a
cloud-based IoT platform. ThingSpeak allows for the real-time collection and visualization of sensor data, making it
an ideal platform for loT-enabled predictive maintenance systems. The Simulink model is designed to send the
predicted maintenance level to ThingSpeak using its RESTful API.
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The maintenance data is stored in ThingSpeak, and real-time updates are provided via the ThingSpeak dashboard. This
enables operators to remotely monitor the system’s health, make timely maintenance decisions, and track the
equipment's condition over time.

3. RESULT ANALYSIS

Simulink model output

Simulink model has been test with the low vibration values as well as the high vibration values. The input vibration
value and the output of neural network controller has been plotted using scope. The waveform obtained is shown
below. As shown in the graph, when the vibrations is less than the 10, the predicted label is ‘0’ and when the vibration
level is greater than 10, then predicted label is 1.
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Figure 3: Proposed model output
10T integration output:

The model sends the predicted label to the cloud server of ThingSpeak 10T platform. The data is available on the

channel named as “Predictive maintenance”. This channel retains the historical data. Cloud data is shown in the figure
below.

m Things peak‘“ Channels ~ Apps -~ Devices~ Support—

Predictive maintenance

Channel ID: 2T31058
Author: mwattM028821908
Access: Public

Private View Public View Channel Settings Sharing APl Keys Data Import / Export

£ Add visualzations ][ 3 Acd wWidosts ][ B Export recent data

Channel Stats

Created:

Last entry: 3
Entries: 24

Field 1 Chart & o #f o=

Predictive maintenance

Malntenance signal
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Date .
hingSpaak.com

Figure 4: 10T integration output
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Neural Network performance metrices

The neural network model is trained using historical vibrational data, with the maintenance level labels provided by
domain experts or maintenance logs. The training set is used to optimize the weights of the network, while a separate
testing set is used to evaluate its predictive accuracy. Performance metrics such as regression plot, error histogram,
MSE, etc. are computed to assess the model's effectiveness in predicting maintenance needs.
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Figure 6:
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Best validation performance
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Figure 7:
MSE vs. observations

Observations MSE R
Training 350 4.9393e-11 1.0000
Validation 75 2.8752e-13 1.0000
Test 75 2.4073e-04 0.9994

Figure 8:
10T Integration Testing

Once the model is integrated with ThingSpeak, the system is tested for real-time performance. The predicted
maintenance levels are sent to the ThingSpeak platform at regular intervals, and the dashboard is used to visualize the
data. The system is evaluated based on its responsiveness, the accuracy of the predictions displayed on the dashboard,
and its ability to function in a real-time setting.

The remote monitoring capability of the system ensures that maintenance decisions can be made even when the
operator is not physically present at the location, reducing response times and improving operational efficiency.

4. CONCLUSION

The proposed neural network-based predictive maintenance system for offshore wind farms, utilizing vibration data
and integrated with the ThingSpeak loT platform, demonstrated an accuracy of over 99%. This system effectively
predicts maintenance needs (required or not) and remotely transmits the results to the cloud for real-time monitoring,
ensuring timely interventions. Future work could involve integrating additional sensor data such as temperature and
pressure, incorporating advanced machine learning techniques like deep learning for enhanced accuracy, and enabling
real-time data collection for dynamic model updates. Further optimizations could focus on scalability for larger wind
farms, cost-benefit analysis for deployment, and extending the system’s application to other renewable energy sources,
such as solar and hydroelectric systems. These improvements would enhance the model's robustness, scalability, and
overall efficiency in predicting maintenance needs across diverse renewable energy systems.
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