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ABSTRACT

Modern web browsers often rely on time-based heuristics to manage inactive tabs by discarding or suspending them to
save memory. However, these strategies often overlook the CPU overhead caused by reloading discarded tabs when
users return to them, which can result in higher resource consumption than keeping the tab inactive. This paper addresses
the theoretical approach of the trade-off between memory optimization and CPU usage by proposing a dynamic tab
management algorithm that optimizes the discard timing based on real-time cost-benefit analysis. Instead of a fixed time
interval, the proposed solution considers both the CPU cost of reloading and the CPU/memory cost of keeping tabs
inactive, adapting discard decisions to minimize overall resource consumption. This approach aims to balance efficient
memory usage while reducing CPU spikes, improving browser performance and energy efficiency.

This research explores the limitations of current browser tab management algorithms and introduces a novel
optimization that can be applied to modern browsers, potentially leading to more efficient resource management for
better user experiences.

Keywords - CPU Usage Optimization; Resource Allocation Algorithms; Dynamic Tab Suspension; Energy Efficiency
in Browsers; Inactive Tab Reloading, Time-Based Heuristics in Browsers.

1. INTRODUCTION

Web browsers have become integral to daily life, serving as gateways to applications, social platforms, and business
tools. However, managing the vast resources consumed by multiple open tabs remains a significant challenge. Modern
browsers, such as Chrome and Edge, employ tab management algorithms to conserve memory by discarding or
suspending inactive tabs. These strategies are typically time-based and aim to reduce memory consumption by
offloading inactive tabs after a set period. However, this approach often fails to account for the CPU and network costs
of reloading discarded tabs, which can significantly offset memory savings.

The trade-off between memory optimization and CPU usage becomes crucial, especially on resource-constrained
devices like laptops and mobile phones. When a tab is discarded, it needs to be fully reloaded when accessed again,
which can result in high CPU and network load. While memory consumption drops during dormancy, the cost of
reactivating the tab may surpass the savings achieved, particularly for complex or frequently revisited pages.

This paper explores the inefficiency of time-based heuristics in browser tab management, where tabs are discarded based
on arbitrary time intervals without considering the complexity of the content or reactivation costs. A more intelligent,
cost-aware algorithm is needed to balance the CPU and memory trade-offs more effectively.

The proposed research focuses on designing a dynamic algorithm that evaluates both the CPU cost of reloading a tab
and the ongoing cost of maintaining an inactive state, optimizing the decision of when to discard a tab. By introducing
context-aware decision-making for tab management, this research aims to improve both resource allocation and overall
browser performance.

In the following sections, we will analyze current tab management algorithms, their limitations, and how an optimized
approach can lead to better energy efficiency in modern browsers.

2. RELATED WORK

Recent research on browser tab management has primarily focused on memory optimization techniques like tab
suspension, discarding, and throttling to improve system performance and resource consumption. For example,
Chrome’s tab discarding mechanism frees up memory by suspending inactive tabs, while Edge’s sleeping tabs feature
saves memory by putting tabs into sleep mode after a period of inactivity. These techniques are designed to reduce
memory usage but do not sufficiently address the CPU spikes caused by reloading tabs when users return to them.
Some research has explored throttling mechanisms to limit CPU usage in background tabs. Content throttling restricts
the processing power available to background tasks, thereby reducing CPU consumption while still maintaining the tab
in a usable state.
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However, these strategies often overlook the balance between keeping a tab active to avoid CPU spikes and minimizing
memory consumption.

Additionally, energy-efficient browsing techniques have gained attention, with some proposals incorporating Al to
dynamically manage resource allocation in browsers. A notable example is the study on Al-powered resource
optimization, which uses machine learning to predict user tab-switching behavior and optimize tab suspension times.
However, such solutions remain relatively nascent, and they don’t yet address the issue of CPU load when tabs are
reloaded after being discarded.

While current tab management algorithms excel at minimizing memory usage, they fail to account for the trade-off
between CPU and memory during the reactivation process. My work seeks to build upon these approaches by
introducing a cost-aware dynamic tab management algorithm that balances the CPU cost of reloading with memory
savings, optimizing browser performance and energy consumption.

3. RESEARCH METHODOLOGY

This research presents a dynamic tab management algorithm designed to optimize resource consumption in web
browsers by balancing memory savings and CPU overhead. The methodology is divided into three primary phases: Data
Collection and Analysis, Algorithm Design, and Implementation & Evaluation.

1. Data Collection and A2nalysis

To develop an efficient algorithm, this phase focuses on gathering empirical data from modern browsers, with an
emphasis on:

Tab activity and switching patterns - Monitoring user behavior to identify common patterns in tab usage.

Resource consumption profiling - Measuring CPU, memory, and network usage in different tab states (active, inactive,
suspended, discarded).

Reloading overhead analysis: Quantifying the CPU and network load incurred when reactivating discarded tabs.

This data is collected using browser performance tools such as Chrome DevTools and performance APIs, allowing us
to assess the relative costs and benefits of different tab states.

2. Algorithm Design

Based on the insights from the data, this research proposes a cost-aware, dynamic tab management algorithm. The
algorithm's core functionality includes:

Adaptive Tab Discarding: Rather than using a fixed time interval, the algorithm dynamically adjusts the timing for
discarding inactive tabs. The decision is made based on two key factors:

e CPU cost of reloading the tab upon reactivation.

e CPU and memory cost of maintaining the tab in a suspended state without discarding it.

Cost Function - A cost function is formulated to continuously monitor the trade-off between resource consumption in
suspended and discarded states. The decision to discard is triggered when the predicted CPU cost of reloading the tab
becomes lower than the cost of keeping it suspended.

Predictive Modeling - Machine learning techniques are employed to predict tab usage patterns. By analyzing historical
usage data, the algorithm can predict when a tab is likely to be revisited, adjusting discard timing to optimize
performance without compromising user experience.

3. Implementation & Evaluation

The proposed CPU-efficient browser tab management system incorporates various advanced algorithms to optimize
resource usage, specifically focusing on reducing CPU and memory consumption.

By dynamically adjusting priorities and leveraging Al-driven predictions, this system is designed to improve both
performance and user experience without sacrificing efficiency.

Conclusion of Methodology:

This research employs a comprehensive, data-driven approach to design an optimal tab management algorithm that
dynamically adjusts tab discarding based on real-time resource analysis.

By predicting user behavior and optimizing for CPU-memory trade-offs, this solution aims to enhance browser
performance while maintaining a seamless browsing experience.
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4, WORKFLOW
A. Algorithm Workflow

At the core of this implementation is a sophisticated algorithm that manages browser tabs based on several key factors,
such as the resource intensity of each tab, its URL type (static or dynamic), and predicted user behavior. The algorithm
operates as below steps:

1. Start: Initialize Tab Data

Collect metadata such as:

URL Type: Dynamic or static content.

Resource Usage: CPU, memory, and network consumption.

Last Active Timestamp: Time when the tab was last interacted with.

Decision: Is bandwidth low? — If yes, go to Step 2 else keep monitoring.

2. Low-Cost Suspension Based on Bandwidth

Action: Suspend tabs with dynamic content only if the network speed is lower than a defined threshold.
Decision: Are the tabs dynamic? — If yes, go to step 3 else keep monitoring.

3. Group Tabs by Domain

Action: Group all tabs by domain (i.e., tabs belonging to the same website and opened many tabs frequently).
Decision: Prioritize high/low usage based on tab type (static/dynamic).

4. Priority Assignment

High Priority (1) for the first and last tabs opened by the user.

Low Priority (10) for the middle tabs, assuming they are less likely to be immediately accessed. (Should be applicable
only for frequently opened multiple tabs with the same domain URL).

Decision: Are there more than 50 tabs? — If yes, continue to step 5.

5. Al-Based Prediction

Action: Use an Al model to predict which tab the user will access next.
Priority (2) for predicted tabs.

6. Resource Allocation Based on Priority

Action: Allocate more CPU/memory to high-priority tabs (priority 1-2).
Action: Suspend or discard low-priority tabs (priority 10).

7. Reload Cost Estimation

Decision: Compare the CPU cost of keeping a tab inactive versus reloading it when needed. If reload cost > inactive
cost, keep it inactive. If inactive cost > reload cost, discard the tab.

8. Monitor and Adjust

Action: Continuously monitor user activity and adjust priority based on real-time interaction.
End: Loop back to resource reallocation based on any changes in user interaction patterns.
B. Practical Approach

1. Initialize Tab Data

Input: List of opened tabs T[] = {T1, T2, ..., Tn}.

Collect metadata for each tab, including:

URL type (dynamic vs static)

Resource consumption (CPU, memory, network)

Last active timestamp (Ti_last_active)

User interaction patterns (frequency of visits, time spent)

Group tabs by domain: SameDomainTabs[].

fortab in T:

TabData[tab].collect_metadata()
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2. Low-Cost Tab Suspension Based on Bandwidth and Tab Type

Bandwidth Check: Detect low-bandwidth mode and suspend tabs with dynamic content if necessary to save CPU and
network resources.

if network_speed < threshold:

fortab in T:

if TabData[tab].isDynamic:

TabData[tab].suspend() # Suspend resource-heavy dynamic tabs

3. Group Tabs by Domain

Group tabs from the same domain into SameDomainTabs[].

SameDomainTabs = [tab for tab in T if tab.domain == "example.com"]

4. Priority Assignment

High priority (1) is assigned to the first and last tabs, assuming these are most likely to be accessed by the user.
firstTab = SameDomainTabs[0]

lastTab = SameDomainTabs[-1]

TabData[firstTab].priority = 1 # Highest priority

TabData[lastTab].priority = 1

Assign low priority (10) to middle tabs to reduce CPU and memory usage since these tabs are less likely to be visited.
for i, tab in enumerate(SameDomainTabs):

if i >0and i < len(SameDomainTabs) - 1:

TabData[tab].priority = 10 # Low priority for middle tabs

5. Al-Based Prediction for User Interaction

Machine Learning Prediction: Use a model to predict which tab the user will interact with next. Assign priority 2 for
predicted tabs to prepare for user action. This can be achieved by training a simple machine learning model to predict
the next tab based on user behaviour. Alternatively, the system can prioritize a tab immediately when the user hovers
over it.

predictedTab = Al_model.predictNextTab(TabData)
TabData[predictedTab].priority = 2 # Assign high priority to predicted tab
6. Resource Allocation Based on Priority

High-priority tabs (priority 1-2) are given more CPU and memory resources, ensuring fast access and smooth
performance.

Low-priority tabs (priority 10) are suspended or discarded to minimize CPU usage and free up memory.
for tab in SameDomainTabs:

if TabData[tab].priority <= 2:

allocate_resources(tab) # More resources to high-priority tabs

else:

suspend_or_discard(tab) # Low priority tabs are suspended

7. Reload Cost Estimation

CPU Cost Analysis: Compare the CPU cost of reloading a tab against the CPU cost of keeping it inactive. If reloading
uses more CPU than keeping it inactive, the tab remains inactive but not discarded.

Formulae for Calculating Costs:

We can estimate reload cost and inactive cost by assigning weights to these parameters and combining them:
Reload Cost (CPU) Formula:

Reload_Cost = Page_Complexity Factor * (Content_Reload_Time + CPU_Usage_Reload) + Network Latency
Where:

e Page Complexity Factor: Based on the type of content (static, dynamic, multimedia-heavy).

e Content_Reload_Time: Time taken to reload the page's HTML, scripts, styles, etc.
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e CPU_Usage_Reload: Estimated CPU cycles used for re-rendering.

e Network Latency: Time delay due to network fetching, if any resource isn’t cached.

Inactive Cost (CPU) Formula:

The cost of keeping a tab inactive can be estimated as:

Inactive_Cost = Background_Scripts_CPU + Memory_Overhead_CPU

Where:

e Background_Scripts_ CPU: CPU usage of scripts running in the background (like service workers, periodic
updates).

e Memory Overhead CPU: CPU cycles required to maintain the tab’s session in memory.

def calculate_reload_cost(tab):

# Simulating the factors for reload cost based on the tab's content

page_complexity = get_page _complexity(tab) # A factor between 0.5 to 2

reload_time = measure_reload_time(tab) # Seconds

cpu_usage_reload = estimate_cpu_for_reload(tab) # CPU cycles or percentage

network_latency = check_network_latency(tab) # Seconds, if the tab needs external resource fetches

# Calculate reload cost based on the formula

reload_cost = page_complexity * (reload_time + cpu_usage_reload) + network_latency

return reload_cost

def calculate_inactive_cost(tab):

# Simulating the cost of keeping a tab inactive but not discarded

background_scripts_cpu = estimate_background_scripts_cpu(tab) # CPU cycles for background processes

memory_overhead_cpu = estimate_memory_overhead_cpu(tab) # CPU cycles for keeping memory allocated

# Calculate inactive cost

inactive_cost = background_scripts_cpu + memory_overhead_cpu

return inactive_cost

def reload_cost_estimation(tab):

reload_cost = calculate_reload_cost(tab)

inactive_cost = calculate_inactive_cost(tab)

if reload_cost > inactive_cost:

keep_inactive(tab) # Keep the tab inactive, but not discarded

else:

discard(tab) # Discard the tab to save memory

Example Scenario:

Imagine two tabs:

Tab 1: A static news article with few images and no background scripts.

Tab 2: A dynamic dashboard that updates regularly with new data, uses WebSockets, and has heavy multimedia content.

The algorithm would calculate a higher reload cost for Tab 2, as reloading it would require fetching new data, rerunning
JavaScript, and rendering multimedia, whereas the reload cost for Tab 1 would be lower due to static content.
Consequently, Tab 2 is more likely to remain inactive but not discarded, while Tab 1 might be discarded to save
memory.

8. Monitor and Adjust Based on User Activity

Dynamic Priority Adjustments: Monitor user interaction and adjust priority if middle tabs are frequently accessed. This
helps ensure that previously low-priority tabs can quickly become high-priority as needed.

def adjust_priority_on_interaction(tab):
TabData[tab].priority = 2 # Increase priority if a middle tab is frequently accessed
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9. Periodic System Check

Regularly assess the state of the system, adjusting priorities based on real-time CPU, memory usage, and user interaction
patterns to optimize browser performance and minimize CPU load.

def periodic_system_check():

for tab in SameDomainTabs:
adjust_priority_on_interaction(tab)
allocate_resources_hased_on_priority(tab)

C. Flow Summary

High Priority Assignment: Tabs that are most likely to be accessed first (first and last tabs) receive the highest priority,
ensuring they get the necessary resources. This scenario typically occurs when multiple URLs from the same domain
are accessed, as the user may be reviewing various reports or information on the site. Consequently, if the user is
examining reports sequentially, they might open all relevant reports simultaneously and then review them individually,
starting from the first or last tab.

Al Prediction: Machine learning is used to predict the next tab the user will interact with, and this tab is assigned a high
priority to reduce load times. By continuously monitoring the user's browser history, we can readily identify the websites
they frequently visit. This information allows us to anticipate which tab the user will access next, enabling us to preload
that tab to enhance efficiency.

Low Priority for Middle Tabs: Tabs in the middle of the sequence receive the lowest priority, reducing CPU usage as
they are less likely to be accessed.

Dynamic Adjustments: User activity is continuously monitored to ensure resources are efficiently reallocated if user
behaviour changes.

CPU Optimization: The system assesses the trade-off between maintaining inactive tabs and reloading them, thereby
ensuring efficient CPU utilization. By analyzing the resource costs associated with each approach, the system can
strategically manage tab activity to minimize CPU load while maintaining user experience.

5. RESULTS AND DISCUSSION
Monitoring Phase: The browser monitors each tab’s state (active, inactive, or background) and periodically records
resource metrics, including CPU usage, memory consumption, and network bandwidth.

Decision Making: Using a cost function, the algorithm continuously evaluates whether to keep a tab in a suspended
state or discard it based on the predicted resource consumption of reloading versus keeping it inactive.

Adaptive Discard Timing: Based on user behaviour patterns (e.g., switching frequency, idle time), the discard time for
each tab is dynamically adjusted. Tabs with high reactivation costs are kept inactive longer, while lightweight tabs are
discarded earlier.

Reactivation Handling: When a tab is reactivated, the algorithm measures the resource overhead caused by reloading,
allowing future discard decisions to incorporate this feedback.

Key Findings:

The proposed algorithm significantly enhances resource management by dynamically adjusting tab discard times based
on real-time resource usage and user behaviour.

Key outcomes include:

Minimized CPU Overhead: Reduced activation costs for resource-intensive tabs.

Improved Memory Efficiency: Intelligent management of tab discards.

This adaptive approach is particularly advantageous in resource-constrained environments, such as mobile devices,
while also optimizing CPU performance on high-end desktops.

Strengths:

Real-time Adaptability: The algorithm’s dynamic adjustments outperform traditional fixed-time heuristics.
Predictive Modelling: Utilizes user behaviour patterns to minimize unnecessary tab reloads.

Limitations:

Complex Tab Content: Reactivation costs for highly resource-heavy tabs can occasionally exceed expected overhead,
causing performance lags.
Implementation Complexity: Continuous monitoring and adjustment introduce additional computational overhead.
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6. CONCLUSIONS

This research presents a novel approach to browser tab management by introducing an adaptive, dynamic algorithm that
minimizes both memory consumption and CPU overhead. By continuously monitoring resource usage and adjusting tab
discard times accordingly, the proposed solution strikes a balance between memory savings and reloading efficiency,
addressing key limitations of existing browser management strategies.
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