

REGULATORY REQUIREMENTS FOR HEARING AID DEVICES: AN EVOLVING FRAMEWORK FOR INNOVATION

**Kuppireddy Gowthami Priyanka¹, Kunchala Murali Manohar Joshi²,
Dr. Ponnada V. Naga Lakshmi³, G. Snehalatha⁴**

^{1,2}Master Of Pharmacy, A.U College Of Pharmaceutical Sciences, Visakhapatnam, 530003, Andhra Pradesh, India.

³Ph.D, Assistant Professor, Department Of Pharmaceutics, Chettinad School Of Pharmaceutical Sciences, Chettinad Hospital And Research Institute, Chettinad Academy Of Research And Education, Kelambakkam, Chennai- 603103, Tamilnadu, India.

⁴Research Scholar, A.U. College Of Pharmaceutical Sciences, Vishakapatnam, AP, India.

DOI: <https://www.doi.org/10.58257/IJPREMS44259>

ABSTRACT

Hearing aid devices have advanced from basic sound amplifiers to sophisticated technologies featuring digital processing, wireless connectivity, and personalized fitting. This evolution has driven the establishment of robust regulatory frameworks to balance innovation with patient safety. This article describes the device classification, premarket evaluation, labelling, and post-market surveillance. Globally, hearing aids are classified as medical devices under risk-based categories, with labelling standards ensuring clarity, safe use, and patient awareness. Historically, regulation shifted from physician-prescribed models to the introduction of over-the-counter (OTC) hearing aids, enhancing accessibility while upholding safety. Post-market surveillance and adverse event reporting remain central to monitoring performance and guiding updates.

Keywords: Hearing Aids, Cochlear Implants, Bone Anchored Hearing Aid (BAHA), Over-The-Counter (OTC) Hearing Aids, FDA Classification, Risk-Based Regulation, Premarket Notification (510(K)), Premarket Approval (PMA), Labelling Requirements, Post-Market Surveillance, Digital Signal Processing (DSP), Wireless Connectivity, Tele-Audiology.

1. INTRODUCTION

The United Nations' World Health Organization reports that roughly three hundred sixty million individuals globally experience hearing loss. Deafness impacts cognitive functions such as development and education for kids while posing difficulties throughout adult life routines. This further affects interpersonal and work connections.

A substantial number of people worldwide suffer from impaired auditory function. Despite being commonly utilized in traditional designs for air conduction hearing aids, many individuals experience frustration owing to problems including persistent feedback noises known colloquially as "howling," an uncomfortable sensation akin to ear obstruction, and societal prejudice surrounding their use. (1,12)

Studies on implanted hearing aids have been conducted in order to overcome these restrictions. Recent studies have emphasized the development of fully implantable hearing aids that integrate components such as the microphone and battery within the device. In most designs, these systems are entirely placed beneath the skin in the temporal bone area, except for the output transducer. Consequently, wireless power transfer becomes necessary for recharging the internal battery. This is commonly achieved through inductive coupling, where two coils transmit power transcutaneously across the skin.

Advancements in hearing aid technology corresponded with increases in scientific innovation. In the latter part of the twentieth century, advanced electronic devices capable of amplifying sound were introduced into the marketplace for individuals who needed assistance in listening. The DSP chips expanded upon pre-existing functionalities by incorporating innovations like directional mics, noise cancellation techniques, and wireless connectivity options. These innovations enhanced the SNR and boosted speech comprehension capabilities within contemporary gadgets.

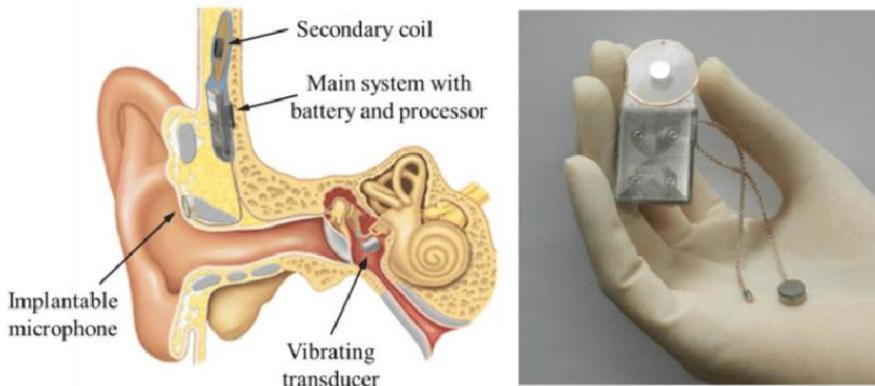
This article reviews the history of hearing aids, their types, regulatory requirements, and emerging trends.

1.1 Definition of Hearing Aids

Hearing aids are sound-amplifying devices designed to assist individuals with hearing loss. Their core components include:

- **Microphone** – captures sound
- **Amplifier circuit** – increases volume

- **Battery** – powers the device
- **Receiver (loudspeaker)** – delivers amplified sound into the ear canal


Hearing aids vary in design, technology (analog vs. digital), software features, and wireless capabilities. Earmolds or earpieces may also be used to enhance sound quality. Selection depends on hearing loss type, severity, listening needs, and lifestyle. (1,2)

2. TYPES OF HEARING AIDS

2.1 Implantable Hearing Aids

Implantable hearing aids are classified as destructive and non-destructive types.

- Cochlear implants (destructive type) are used for profoundly deaf patients. They consist of a transmitter, receiver, microphone, processor, and electrode array inserted into the cochlea to directly stimulate auditory nerves described in fig 1.
- Non-destructive implants use bone conduction. The most advanced form is the Bone Anchored Hearing Aid (BAHA), which employs a titanium screw and sound processor to transmit vibrations directly to the cochlea via bone. BAHA offers higher signal fidelity, comfort, reversibility, and is suitable for patients with external or middle ear malformations or chronic otitis.

Fig 1: Schematic and prototype of a fully implantable hearing aid developed in Korea.

Source : https://www.researchgate.net/figure/Schematic-and-prototype-of-a-fully-implantable-hearing-aid-developed-in-Korea_fig1_282244112

- **Destructive Type:** Includes cochlear implants, which involve insertion of a transmitter, receiver, microphone, and electrode array into the cochlea.
- **Non-destructive Type:** Utilizes bone conduction methods. Examples include Bone Anchored Hearing Aids (BAHA), which bypass the external and middle ear to directly stimulate the cochlea via bone vibration.

2.2 External Hearing Aids

External hearing aids are of two types:

- **Body-worn devices:** Contain amplifier, battery, and circuitry in a small case connected to an earmold by a cord.
- **Ear-worn devices:** The most common type, differing in size, placement (inside or on the ear), and amplification level. Also referred to as air-conduction (AC) hearing aids. (3)

3. HISTORY OF HEARING AIDS

- In 1634, the Ear Trumpet became the first hearing aid to be officially recognized.
- Miller Reese Hutchison invented the first electric hearing aid, the Akouphone, in 1898.
- The first vacuum-tube hearing aid, the Vactuphone, was patented by Earl Hanson in 1920.
- 1956: Behind-the-Ear (BTE) Hearing Aids.
- In the Ear (ITE), which were specifically designed to fit inside the ear, were first introduced in 1970.
- As digital technology developed, cochlear implants were first introduced in the mid-1980s.
- The first completely digital hearing aid was introduced in 1996, and "Made for iPhone hearing aids" were released in 2015.
- By 2018, Android releases compatible hearing aids. (4)

THE HISTORY OF HEARING AIDS

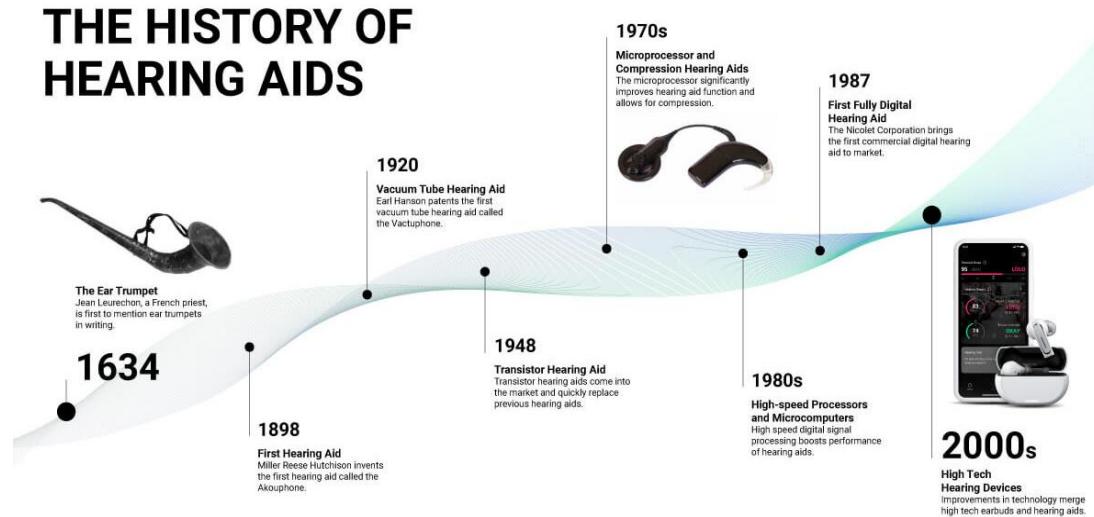


Fig 2: History of hearing Aids

Source: <https://hearinghealthfoundation.org/blogs/hearing-aid-history-ear-trumpets-european-royalty-earbuds>

4. RISK BASED CLASSIFICATION OF HEARING AIDS (FDA)

The FDA categorizes medical devices, including hearing aids, into three classes: Class I, Class II, and Class III, depending on the level of risk they pose to the user. Each type of equipment has regulatory restrictions that are grouped based on how serious they are.

Device type	FDA Class	Risk Level
Basic Hearing Aids	Class I	Low
Advanced Hearing aids	Class II	Moderate
OTC Hearing Aids	Class II	Moderate
Cochlear Implants	Class III	High

Class I Devices:

- Considered low risk; exempt from 510(k) premarket notification in most cases.
- Must still comply with basic requirements: adulteration, misbranding, device registration/listing, GMP, and labelling.
- Examples: face plate devices (LRB), certain air-conduction devices (ESD).
- Exemption limits: devices under 21 CFR 874.3300 (air-conduction) and 21 CFR 874.3305 (wireless air-conduction) require 510(k) if used for a different indication or based on different scientific technology.

Class II Devices (Moderate Risk):

- Require 510(k) premarket notification and compliance with special controls (device-specific safety/effectiveness requirements).
- Examples requiring 510(k):
 - Bone conduction hearing aids (LXB, MAH)
 - Wireless air-conduction hearing aids (OSM)
 - Self-fitting air-conduction hearing aids (QDD)
 - Tympanic membrane contact hearing aids (PLK)
- Certain Class II devices are exempt from the 510(k) premarket notification requirement but must still comply with specific regulatory controls. For example, wireless air-conduction hearing aids are regulated under **21 CFR 874.3305**, which outlines the special conditions they must meet.
- Manufacturers must evaluate intended use and technology to determine regulatory pathway.

Class III Devices (High Risk):

- Require Premarket Approval (PMA) with extensive clinical and scientific data.
- Examples: Implantable middle ear devices, cochlear implants.
- Reflect highest FDA scrutiny due to higher patient risk.

Unclassified Devices:

- Example: Tactile hearing aids (LRA) – unclassified but require 510(k) submission.

510(k) Premarket Notification:

- Main pathway for most Class II and some unclassified devices.
- Manufacturer must prove substantial equivalence to a predicate device (same intended use, similar technology, no new safety risks).
- Requires details on design, intended use, testing, labelling, and side-by-side comparison with predicate.
- Abbreviated 510(k): possible if FDA has issued special controls guidance (e.g., TACHAS).
- Some Class I & II devices may be 510(k)-exempt, but must still follow general/special controls.
- If technological differences exist, supporting data (e.g., performance/biocompatibility tests) must address safety/effectiveness concerns. (5,8)

5. OVER-THE-COUNTER (OTC) HEARING AIDS

The FDA regulates hearing aids as medical devices. OTC hearing aids, introduced in 2022, are intended for adults (18+) with mild to moderate hearing loss. They amplify sound through the ear canal, allow user-controlled customization via tools or software, and may include wireless features or self-assessment tests.

- Are non-implantable, air-conduction devices
- Allow user self-adjustment and customization
- May use wireless technology and hearing self-tests
- Must comply with FDA labelling and safety requirements, including a 111 dB SPL output limit (117 dB with compression) and at least 10 mm distance from the eardrum. (6)

6. LABELLING REQUIREMENTS OF OTC HEARING AID

6.1 General Labelling

The outer package of an OTC hearing aid must include:

- **Statement of Use:**

“Over-the-Counter (OTC) Hearing Aid” must be clearly displayed.

- **Intended User:**

Identifies that the device is intended for individuals 18 years of age and older with perceived mild to moderate hearing impairment.

- **Manufacturer Information:**

- Manufacturer’s name and place of business.
- Contact details for reporting adverse events.
- Lot or serial number for traceability.

6.2 Warnings & Precautions

The package must include warnings such as:

- Not for use by individuals **under 18 years**.
- Seek medical attention if you have any of the following:
 - Pain or discomfort in the ear
 - Sudden, rapid, or fluctuating hearing loss
 - Unilateral hearing loss (only one ear)
 - Active ear drainage, dizziness, or deformity of the ear
- Caution that improper use may cause further hearing damage.

6.3 Technical & Performance Information

- Maximum sound output and gain levels.
- Battery type, expected battery life, and whether rechargeable.
- Wireless technology details (e.g., Bluetooth).
- Compatibility with other devices.

6.4 Instructions for Use

Clear, consumer-friendly instructions must include:

- How to fit, use, and maintain the device.
- Cleaning procedures and storage guidelines.
- Troubleshooting common issues.
- Expected benefits and limitations.

6.5 Inside-the-Box Labelling (User Instructions)

Each device must contain a **User Instruction Manual** that reiterates:

- Device purpose and intended population.
- Step-by-step fitting and adjustment.
- Maintenance and care instructions.
- Warnings and when to seek professional help.

6.6 Accessibility Requirements

- Labelling must be **easy-to-read** and written in **plain language**.
- Font must be legible with high contrast.
- Digital access (QR code or link to electronic instructions) is encouraged.
- Warnings, age restrictions, and “red flag” health conditions
- Manufacturer details and return policies
- Clear “OTC” designation on packaging
- Battery and compatibility information. (7)

7. REGULATORY REQUIREMENTS

FDA Regulation

Under Section 201(h) of the FD&C Act, hearing aids are classified as medical devices. They differ from Personal Sound Amplification Products (PSAPs), which are not regulated as medical devices unless marketed as hearing-loss treatments.

Premarket Notification (510(k))

Generally, most Class II and certain unclassified medical devices must undergo a 510(k) submission to establish that they are substantially equivalent to an already approved (predicate) device. While some exemptions apply, these are often conditional. In a 510(k) submission, the manufacturer must provide evidence showing that the new device has the same intended use and similar technological features as the predicate device, along with supporting performance data when required.

PMA (Pre-market approval)

A PMA is the most stringent type of premarket filing. The sponsor must present reliable scientific proof of a reasonable assurance of safety and efficacy for the device's intended use before the FDA will approve a PMA.

De Novo (Automated Class III Designation Evaluation) De Novo offers a way to classify a new device that doesn't have a valid predicate into either Class I or II if it satisfies specific requirements. (9)

8. POST-MARKET SURVEILLANCE

The term “Market Surveillance” refers to the monitoring activities conducted by regulatory authorities to ensure compliance and safety of medical devices in the market. In contrast, “Post-Market Surveillance” involves the continuous monitoring and evaluation activities undertaken by manufacturers after a device is released, aimed at identifying and addressing potential risks. Manufacturers implement corrective and preventive actions (CAPA) to minimize or eliminate risks linked to their medical devices. (10)

Once hearing aids are marketed, manufacturers must comply with FDA post-market surveillance and reporting obligations to ensure ongoing safety and effectiveness. This includes:

- **Adverse Event Reporting:** Manufacturers, healthcare providers, and consumers can submit adverse event reports through FDA's MedWatch system.
- **Recalls:** Defective or risky devices may be recalled voluntarily or at FDA's request. Manufacturers must also report any corrections or removals to mitigate health risks.

- **Electronic Product Radiation Control:** Since hearing aids contain electronic components, manufacturers must comply with radiation control regulations, including reporting radiation defects/incidents and fulfilling repair, replacement, or repurchase requirements when applicable. (11)

9. CONCLUSION

The trajectory of hearing aid development demonstrates how necessity, innovation, and regulation converge to transform healthcare. From simple acoustic devices of the 17th century to today's intelligent, connected systems, hearing aids have evolved into comprehensive health technologies. Modern devices now extend far beyond amplification—incorporating digital signal processing, AI-driven noise reduction, wireless connectivity, and integration with smartphones and wearable platforms. These advancements empower patients with personalized, adaptive solutions that respond to diverse listening environments in real time.

Regulatory frameworks, especially those shaped by the FDA, have evolved in parallel to ensure that technological breakthroughs remain safe, effective, and accessible. The introduction of Over-the-Counter (OTC) hearing aids in 2022 was a pivotal milestone, democratizing access for millions of adults with mild to moderate hearing loss. By 2025, hearing aids are no longer standalone devices; they are part of a broader digital health ecosystem, enabling remote adjustments, tele-audiology, and even biometric monitoring to support overall well-being.

10. REFERENCES

- [1] U.S. Food and Drug Administration. Types of Hearing Aids [Internet]. Silver Spring (MD): FDA; [cited 2025 Oct 16]. Available from: <https://www.fda.gov/medical-devices/hearing-aids/types-hearing-aids>
- [2] Zia ur rehman, Muhammad & Shah, Syed & Gilani, Syed & Jamil, Mohsin & Amin, Faisal. (2016). An Appraisal of the Advancement of Emerging Technologies in Hearing Aids. Indian Journal of Science and Technology. 9. 10.17485/ijst/2016/v9i25/96607.
- [3] Sutton AE, Krogmann RJ, Al Khalili Y. Cochlear Implants [Internet]. In: StatPearls. Treasure Island (FL): StatPearls Publishing; [updated 2025 Jan 22] [cited 2025 Oct 16]. Available from: <https://www.ncbi.nlm.nih.gov/books/NBK544280/>
- [4] Nagish. Hearing Aid History [Internet]. [cited 2025 Oct 16]. Available from: <https://nagish.com/post/hearing-aid-history>
- [5] U.S. Code of Federal Regulations. 21 CFR § 800.30 — Over-the-counter hearing aid controls [Internet]. Washington (DC): Office of the Federal Register; [cited 2025 Oct 16]. Available from: <https://www.ecfr.gov/current/title-21/chapter-I/subchapter-H/part-800/subpart-B/section-800.30>
- [6] National Institute on Deafness and Other Communication Disorders. Over-the-Counter Hearing Aids [Internet]. Bethesda (MD): NIDCD; 2024 Jun 13 [cited 2025 Oct 16]. Available from: <https://www.nidcd.nih.gov/health/over-counter-hearing-aids>
- [7] U.S. Code of Federal Regulations. 21 CFR Part 801 — Labeling [Internet]. Washington (DC): Office of the Federal Register; [cited 2025 Oct 16]. Available from: <https://www.ecfr.gov/current/title-21/chapter-I/subchapter-H/part-801>
- [8] U.S. Food and Drug Administration. OTC Hearing Aids: What You Should Know [Internet]. Silver Spring (MD): FDA; 2023 May 3 [cited 2025 Oct 16]. Available from: <https://www.fda.gov/medical-devices/hearing-aids/otc-hearing-aids-what-you-should-know>
- [9] Swathilakshmi U*, Revathi K, Sowjanya K, Shailaja P, Sravani S and Indira P, Review on Substantial Equivalence of Medical Devices-USFDA, ISSN-2577-2856, Modern Applications of Bioequivalence & Bioavailability (MABB), 15th Dec 2017.
- [10] Pashikanti, Shailaja. (2017). Post Marketing Surveillance Requirements of Drug Eluting Stents in India and European Union.
- [11] Lu Q, Husein M, Jeyakumar A. Review of Reported Adverse Events Associated With Prescription Hearing Aids in the Manufacturer and User Facility Device Experience (MAUDE) Database. Cureus. 2025 Jan 1;17(1):e76737. doi: 10.7759/cureus.76737. PMID: 39897269; PMCID: PMC11784808.
- [12] Lim, Hyung-Gyu & Kim, Jong & Shin, Dong & Woo, Seong & Seong, Ki-Woong & Lee, Jyung & Kim, Myoung Nam & Wei, Qun & Cho, Jin-Ho. (2015). Wireless charging pillow for a fully implantable hearing aid: Design of a circular array coil based on finite element analysis for reducing magnetic weak zones. Bio-medical materials and engineering. 26. S1741-S1747. 10.3233/BME-151474.