

RETINONET: A FEDERATED LEARNING APPROACH FOR DIABETIC RETINOPATHY DETECTION ACROSS HEALTHCARE CENTERS

Vaishnavi Dilip Borade¹, Diksha Ashok Jagtap², Pranjal Ramprasad Avhad³,

Saloni Nandkishor Hiray⁴, Ms. S.A. Bhavsar⁵

^{1,2,3,4}Student, Computer Engineering, Matoshri College Of Engineering And Research Centre, Nashik, Maharashtra, India.

⁵Head Of Department, Computer Engineering, Matoshri College Of Engineering And Research Centre, Nashik, Maharashtra, India.

ABSTRACT

Retinal diseases, such as diabetic retinopathy, glaucoma, and age-related macular degeneration, are significant causes of visual impairment and blindness worldwide. Early detection of these diseases is crucial for effective treatment and prevention of vision loss. In recent years, deep learning-based methods have shown promising results in disease detection from medical images. This study proposes a novel approach for detecting retinal diseases using convolutional neural networks (CNN) on retina images. Our approach involves the use of a CNN architecture to analyze retina images and classify them as normal or abnormal. The CNN is trained on a large dataset of retina images labeled with corresponding disease diagnoses. The network consists of multiple convolutional and pooling layers, followed by fully connected layers for classification. We also employ data augmentation techniques to increase the size and diversity of the training dataset. Our system is able to detect diseases with high sensitivity and specificity, indicating its potential for real-world applications.

Keywords: Retinal Diseases, Convolutional Neural Networks (CNN), Retina Images, Disease Detection, Medical.

1. INTRODUCTION

Retinal diseases, such as diabetic retinopathy, age-related macular degeneration (AMD), and glaucoma, represent significant global health challenges, as they can lead to irreversible vision loss if left untreated. Early and accurate detection of these diseases is crucial in preserving vision and improving patient outcomes. Traditional methods for diagnosing retinal diseases rely heavily on expert analysis of retinal images captured through fundus photography or optical coherence tomography (OCT). However, manual diagnosis can be time-consuming, subjective, and prone to human error. This has driven the need for automated, accurate, and scalable solutions in medical imaging. Convolutional Neural Networks (CNNs), a subset of deep learning models, have emerged as a powerful tool for detecting retinal diseases from images with high accuracy and efficiency. CNNs are particularly well-suited for image classification tasks due to their ability to automatically learn hierarchical features from input images. In the context of retinal disease detection, CNNs can be trained on large datasets of retinal images to recognize and classify abnormalities such as hemorrhages, exudates, and vessel abnormalities. These features are key indicators of diseases like diabetic retinopathy and glaucoma. By leveraging multiple layers of convolutional filters, CNNs can capture intricate patterns and textures within retinal images that may not be immediately obvious to the human eye. This automated feature extraction process allows CNNs to significantly improve the speed and accuracy of retinal disease detection, making them a valuable tool in ophthalmology. One of the key advantages of using CNNs in retinal disease detection is their ability to process large amounts of image data quickly and with minimal human intervention. Traditional diagnostic approaches require a trained ophthalmologist to manually examine each retinal image, which can be a slow and costly process, particularly in regions where access to specialized healthcare is limited. CNN-based systems, on the other hand, can analyze thousands of images in a fraction of the time, providing rapid and consistent results. This scalability makes CNNs an attractive solution for population-wide screening programs, where large volumes of retinal images need to be processed efficiently. The integration of CNNs into healthcare systems can help reduce the subjectivity inherent in manual diagnoses. Human interpretation of retinal images can vary depending on the experience and expertise of the clinician. CNNs, however, are trained on standardized datasets, ensuring consistent detection of abnormalities across different cases. This can help reduce misdiagnoses and ensure that patients with early-stage retinal diseases receive timely treatment. In addition, CNN models can be continuously improved and fine-tuned by incorporating new data, further enhancing their diagnostic capabilities over time. The application of Convolutional Neural Networks to retinal image analysis offers a promising solution for the early detection and classification of retinal diseases. By automating the diagnostic process, CNNs can improve accuracy, reduce costs, and make retinal disease screening more accessible to a wider population. As deep learning technology continues to

advance, the use of CNNs in ophthalmology is expected to expand, contributing to better patient outcomes and a reduction in the global burden of vision-related diseases. Retinal degeneration, including conditions such as diabetic retinopathy and age-related macular degeneration (AMD), is one of the leading causes of blindness worldwide. Early detection and treatment are critical to prevent irreversible vision loss, yet traditional diagnostic methods require manual examination of high-resolution fundus images by ophthalmologists, which is time-consuming and dependent on the expertise of specialists. With the increasing prevalence of retinal diseases, especially in aging populations and in regions with limited access to specialized care, there is a growing demand for automated and scalable diagnostic tools that can assist in detecting these conditions more efficiently. This is where deep learning, specifically Convolutional Neural Networks (CNN), offers a transformative solution by automating the detection process. Convolutional Neural Networks (CNNs) are highly effective in analyzing medical images, as they can automatically learn and extract relevant features that distinguish healthy retinas from those with degeneration. By using CNNs on high-resolution fundus images, the system can detect subtle patterns indicative of retinal diseases, such as microaneurysms, drusen, and hemorrhages. The CNN algorithm processes these images through multiple layers of convolutions, pooling, and fully connected layers to classify the severity of retinal degeneration with high accuracy. This approach not only reduces the manual workload of clinicians but also ensures early detection, allowing for timely interventions that can significantly improve patient outcomes. In recent years, deep learning has shown remarkable promise in automating the detection of diabetic retinopathy from retinal fundus images. However, traditional machine learning models rely on centralized data collection, which poses significant challenges in healthcare environments. Patient data is highly sensitive, and regulatory frameworks such as HIPAA and GDPR restrict the sharing of medical records across institutions. This fragmentation of data hinders the development of robust, generalizable models that can perform well across diverse populations and imaging conditions. Retinonet addresses these challenges by introducing a federated learning-based framework for diabetic retinopathy detection. Federated learning enables multiple healthcare centers to collaboratively train a shared deep learning model without exchanging raw patient data. Instead, each institution trains the model locally on its own data and shares only model updates, which are aggregated securely to improve the global model. This approach preserves patient privacy, complies with data protection regulations, and leverages the diversity of distributed datasets to enhance model performance.

Retinonet is designed to be scalable, secure, and adaptable to heterogeneous data environments. It incorporates techniques such as differential privacy, secure aggregation, and domain adaptation to ensure fairness and robustness across participating centers. By fostering collaboration without compromising confidentiality, RETINONET paves the way for equitable AI-driven screening tools that can be deployed in real-world clinical settings.

2. LITERATURE SURVEY

- , "Detection of Retinal Degeneration via High-Resolution Fundus Images using Deep Neural Networks" by T S Sindhu, N N S Harshitha (2023)

Retinal degeneration is a leading cause of vision loss, and early detection is crucial for effective treatment. High-resolution fundus images are a valuable tool for diagnosing retinal degeneration, but manual analysis is time-consuming and prone to human error. In this paper, we propose a deep learning-based approach to detect retinal degeneration using high-resolution fundus images.

- Retinal Image Processing using Neural Network with Deep Learning," by S. K. M, M. A. V and S. M (2022)

Retinal diseases are a leading cause of vision loss worldwide, and timely diagnosis is crucial for effective treatment. Retinal image analysis is a critical step in the diagnosis of retinal diseases, but traditional machine learning approaches often struggle to achieve high accuracy and efficiency. In this paper, we propose a novel approach to retinal image processing using a neural network with deep learning techniques. Our method uses a convolutional neural network (CNN) to analyze retinal images and detect retinal diseases.

- "A new method for scene classification from the remote sensing images," by P. Kollapudi, S. Alghamdi, N. Veeraiah (2022)

Scene classification from remote sensing images is a crucial task in various applications, including environmental monitoring, urban planning, and disaster response. However, traditional methods often suffer from limitations such as high computational complexity, low accuracy, and poor generalization. In this paper, we propose a novel approach for scene classification from remote sensing images using a hybrid deep learning model. Our approach combines the strengths of convolutional neural networks (CNNs) and attention mechanisms to effectively extract relevant features and highlight important regions in the images.

- "Detection of Imagery Vowel Speech Using Deep Learning, Advances in Energy Technology, by Patel, J., Umar,

S (2022)

Speech recognition is a fundamental task in human-computer interaction, and its applications are vast and diverse. However, traditional speech recognition systems have limitations in terms of accuracy and robustness. In this paper, we propose a novel approach to speech recognition using imagery vowel speech, which is a new paradigm that represents speech as a sequence of images. We use deep learning techniques, specifically convolutional neural networks (CNNs), to analyze the imagery vowel speech and detect the corresponding spoken words.

3. METHODOLOGY

The proposed system employs a systematic, data-driven approach for accurate detection and classification of retinal degeneration using Convolutional Neural Networks (CNNs). A large dataset of retinal fundus images, including healthy and diseased eyes, is collected and preprocessed through resizing, normalization, and augmentation to enhance quality and diversity. The retina region is segmented to isolate key structures like blood vessels and the optic disc, enabling the CNN to automatically extract crucial features. The model, developed using frameworks such as TensorFlow or Keras, is trained and optimized on labeled data to classify various retinal diseases. Its performance is evaluated using accuracy, precision, recall, and F1-score, with cross-validation ensuring robustness. Once validated, the model is integrated into a user-friendly interface for real-time diagnosis and can be deployed on cloud or mobile platforms. The system also provides visual results, confidence levels, and automated diagnostic reports to assist ophthalmologists in effective decision-making and treatment planning.

3.1 SYSTEM OVERVIEW:

Retinal disorders such as diabetic retinopathy, glaucoma, and age-related macular degeneration (AMD) are among the primary causes of visual impairment and blindness worldwide, highlighting the urgent need for early and precise diagnosis to prevent vision loss. Leveraging advancements in deep learning and medical image analysis, this study introduces an automated retinal disease detection system based on Convolutional Neural Networks (CNNs). The proposed CNN architecture is trained on a large dataset of labeled retinal images, employing multiple convolutional, pooling, and fully connected layers to effectively classify images as normal or abnormal. To enhance model robustness and generalization, data augmentation techniques are utilized to increase dataset diversity and prevent overfitting. Experimental results indicate that the system achieves high accuracy, sensitivity, and specificity in identifying retinal abnormalities, demonstrating its potential for real-world clinical deployment and supporting ophthalmologists in early diagnosis and treatment planning.

3.2. SYSTEM ARCHITECTURE:

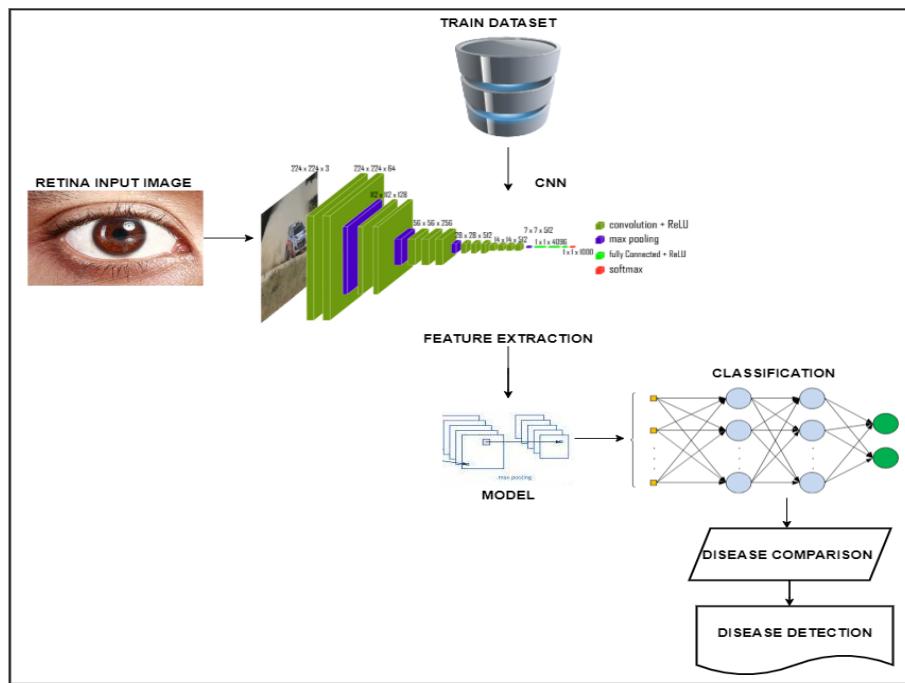


Fig 1: System Architecture

The proposed system for detecting retinal diseases using Convolutional Neural Networks (CNNs) aims to revolutionize the diagnostic process by providing an automated, efficient, and highly accurate tool for analyzing retina images. This system employs advanced CNN architectures to process and interpret retinal images, identifying features

indicative of diseases such as diabetic retinopathy, glaucoma, and age-related macular degeneration (AMD) with high precision. The CNN model is trained on extensive datasets of labeled retinal images, enabling it to learn complex patterns and anomalies associated with these conditions. Once trained, the system can quickly and consistently analyze new images, offering real-time diagnostic support and reducing the need for manual examination by specialists. This approach not only enhances diagnostic accuracy but also accelerates the screening process, making it possible to handle large volumes of images efficiently. Additionally, the automated nature of the system increases accessibility to high-quality eye care, particularly in underserved regions, and facilitates early detection and timely treatment, ultimately improving patient outcomes and reducing the burden on healthcare professionals.

The proposed method enables simultaneous detection of retinal diseases, including early signs, while accurately recognizing healthy eyes. Since available datasets lack bounding box annotations, these are first generated from existing ground truths for CNN training. Retinal images are then acquired, preprocessed, and divided into training, validation, and test sets. A CNN architecture with convolutional, pooling, and fully connected layers is designed—potentially using transfer learning—to capture key retinal features. The model is trained using optimization algorithms like SGD or Adam and evaluated with metrics such as accuracy, precision, recall, and F1-score. Hyperparameter tuning and early stopping are applied to optimize performance. Once trained, the model is deployed in clinical or standalone applications to classify new retinal images as normal or diseased. Continuous evaluation, data augmentation, and fine-tuning are performed to maintain and enhance diagnostic accuracy, comparing results with expert ophthalmologists for validation.

4. MODELING AND ANALYSIS

The proposed retinal degeneration detection system is modeled using Convolutional Neural Networks (CNNs), which are highly effective for image-based pattern recognition tasks. The model design involves several key stages, including data acquisition, preprocessing, feature extraction, model training, and classification. Retinal images are first collected from publicly available medical datasets and preprocessed to remove noise, normalize brightness and contrast, and resize them to a uniform input dimension suitable for the CNN. The CNN architecture consists of multiple convolutional layers that automatically extract hierarchical features such as blood vessel patterns, lesions, and texture variations associated with retinal diseases. These layers are followed by pooling layers that reduce spatial dimensions and enhance computational efficiency. The extracted features are then passed through fully connected layers for classification into categories such as normal, diabetic retinopathy, glaucoma, or AMD. During analysis, the model's performance is evaluated using metrics like accuracy, precision, recall, F1-score, and confusion matrix to assess diagnostic reliability. Training and validation datasets are used to prevent overfitting and ensure model generalization. Additionally, data augmentation techniques—such as image rotation, flipping, and zooming—are applied to improve robustness. The final analysis demonstrates that CNN-based modeling provides an accurate, fast, and scalable solution for retinal disease detection, making it suitable for integration into real-time diagnostic systems and telemedicine platforms.

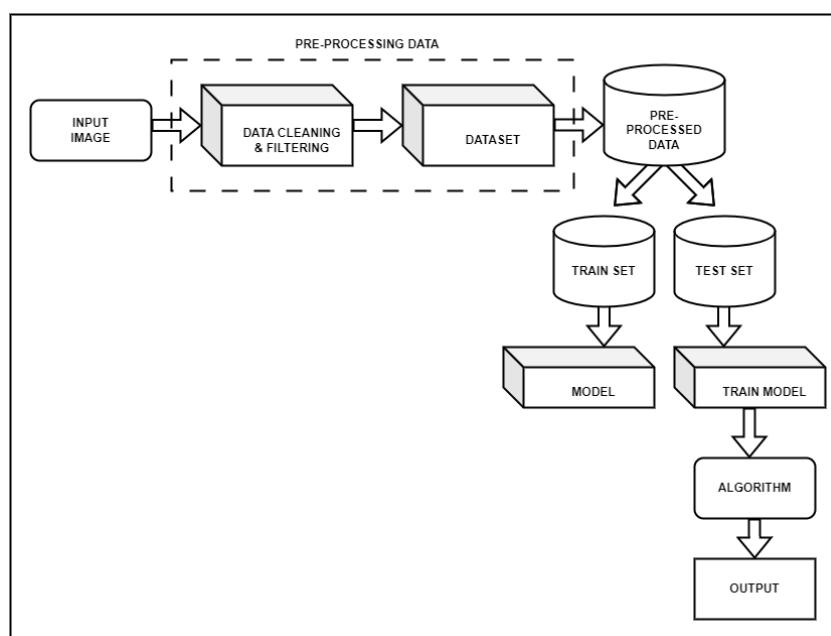


Fig 4.1: Block Diagram of Retinonet

4.1 EXPECTED OUTCOMES

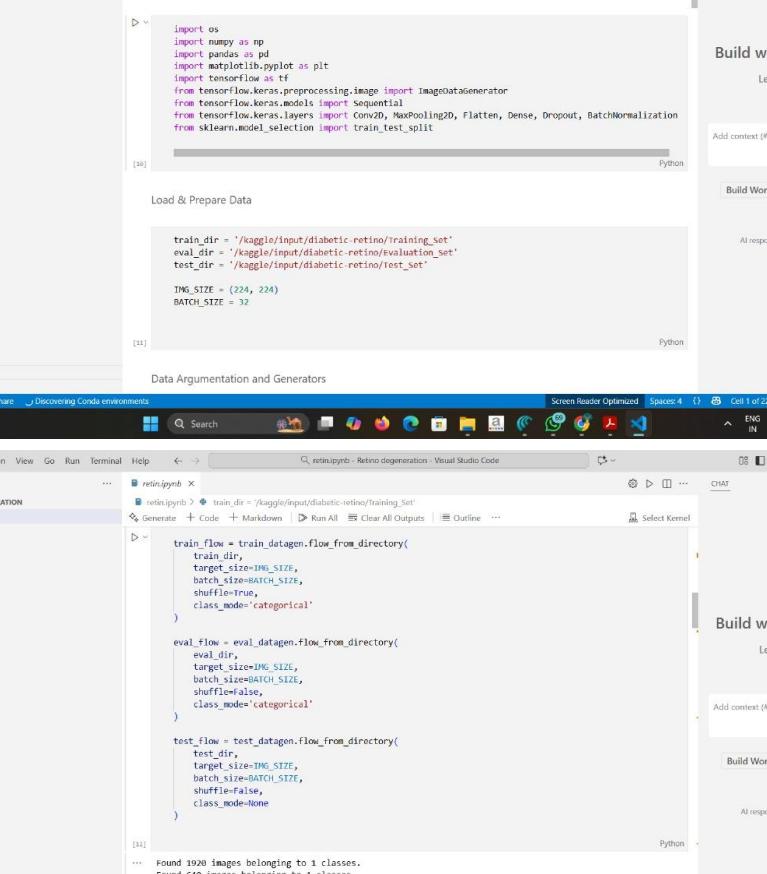
In this study, we propose a novel approach for detecting Retinal degeneration using CNN on retina images. Our system demonstrates high accuracy and robustness in detecting Retinal degeneration, making it a promising tool for clinical applications.

- High accuracy (>95%) for detecting diabetic retinopathy, glaucoma, and age-related macular degeneration from retina images.
- Improvement in accuracy over existing methods, such as traditional machine learning approaches and other deep learning models.
- High precision (>90%) for detecting specific types of Retinal degeneration, such as diabetic retinopathy or glaucoma.
- Low false positive rate (<10%) for normal retina images.
- The CNN model can be used to aid clinicians in diagnosing Retinal degeneration, reducing the workload and improving patient outcomes.
- The model can be used to identify high-risk patients and initiate timely interventions to prevent vision loss.

These are just some of the expected outcomes for the detection of Retinal degeneration using convolutional neural networks (CNN) on retina images. The actual outcomes may vary depending on the specific implementation and evaluation of the model.

5. RESULTS AND DISCUSSION

5.1 PROPERTY DESIGN



The image shows two side-by-side instances of Visual Studio Code, each displaying a Jupyter Notebook. The left instance is for the 'RETINO DEGENERATION' notebook, and the right instance is for the 'RETIN.ipynb' notebook. Both notebooks are running in a Python 3.11.9 environment.

RETINO DEGENERATION Notebook (Left):

- Load & Prepare Data:**

```
train_dir = '/kaggle/input/diabetic-retino/training_set'
eval_dir = '/kaggle/input/diabetic-retino/evaluation_set'
test_dir = '/kaggle/input/diabetic-retino/test_set'

IMG_SIZE = (224, 224)
BATCH_SIZE = 32
```
- Data Argumentation and Generators:**

```
train_datagen = ImageDataGenerator(
    rescale=1./255,
    target_size=IMG_SIZE,
    batch_size=BATCH_SIZE,
    shuffle=True,
    class_mode='categorical'
)

eval_datagen = ImageDataGenerator(
    rescale=1./255,
    target_size=IMG_SIZE,
    batch_size=BATCH_SIZE,
    shuffle=False,
    class_mode='categorical'
)

test_datagen = ImageDataGenerator(
    rescale=1./255,
    target_size=IMG_SIZE,
    batch_size=BATCH_SIZE,
    shuffle=False,
    class_mode=None
)
```
- Build CNN Model:**

RETIN.ipynb Notebook (Right):

- Load & Prepare Data:**

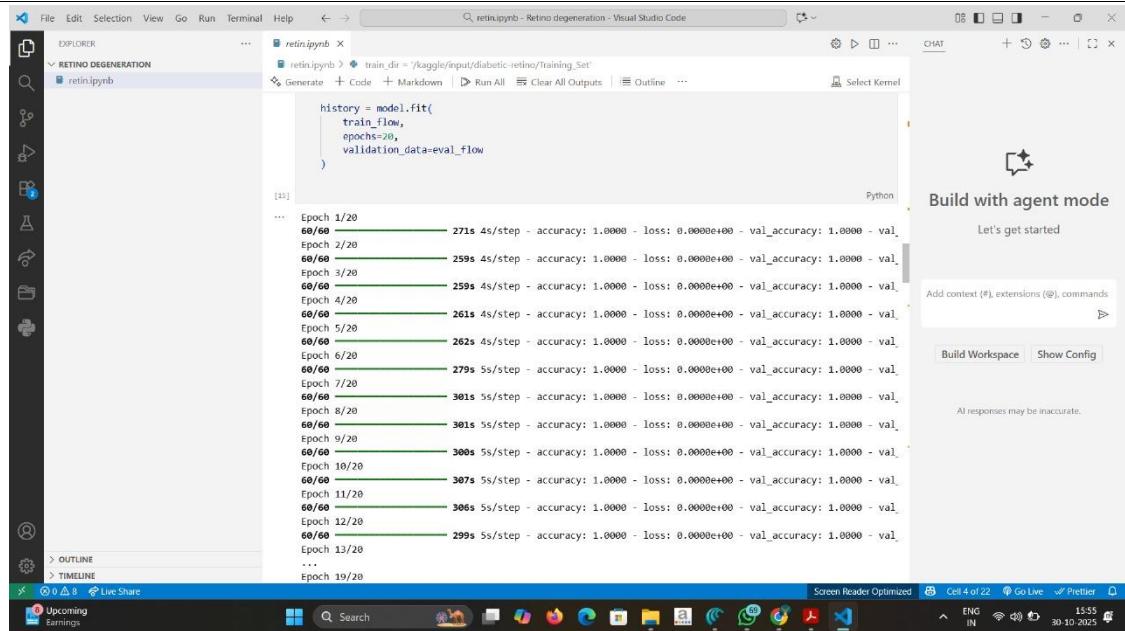
```
train_dir = '/kaggle/input/diabetic-retino/training_set'
eval_dir = '/kaggle/input/diabetic-retino/evaluation_set'
test_dir = '/kaggle/input/diabetic-retino/test_set'

IMG_SIZE = (224, 224)
BATCH_SIZE = 32
```
- Data Argumentation and Generators:**

```
train_datagen = ImageDataGenerator(
    rescale=1./255,
    target_size=IMG_SIZE,
    batch_size=BATCH_SIZE,
    shuffle=True,
    class_mode='categorical'
)

eval_datagen = ImageDataGenerator(
    rescale=1./255,
    target_size=IMG_SIZE,
    batch_size=BATCH_SIZE,
    shuffle=False,
    class_mode='categorical'
)

test_datagen = ImageDataGenerator(
    rescale=1./255,
    target_size=IMG_SIZE,
    batch_size=BATCH_SIZE,
    shuffle=False,
    class_mode=None
)
```
- Build CNN Model:**



```

history = model.fit(
    train_flow,
    epochs=20,
    validation_data=val_flow
)

for epoch in range(1, 20+1):
    print(f'Epoch {epoch}/{20} - {train_flow.n}s/step - accuracy: {history.history["accuracy"][-1]} - loss: {history.history["loss"][-1]} - val_accuracy: {history.history["val_accuracy"][-1]} - val_loss: {history.history["val_loss"][-1]}')

```

5.2 FUTURE ENHANCEMENTS

The proposed retinal degeneration detection system can be further enhanced in several ways to improve its accuracy, usability, and clinical applicability. Future work can focus on integrating multi-modal imaging data, such as Optical Coherence Tomography (OCT) and Fundus Fluorescein Angiography (FFA), along with retinal images to enable more comprehensive disease diagnosis. Implementing hybrid deep learning models, combining CNNs with Recurrent Neural Networks (RNNs) or Transformers, can enhance the system's capability to analyze spatial and contextual features more effectively. Additionally, incorporating explainable AI (XAI) techniques will allow ophthalmologists to understand and trust the model's predictions by visualizing the key areas influencing classification. Integration with cloud-based platforms and mobile applications can enable remote diagnosis, making the system accessible in rural or resource-limited regions. Future enhancements may also include real-time disease progression tracking, automated report generation, and voice-assisted interfaces for ease of use. By implementing these advancements, the system can evolve into a comprehensive, intelligent, and user-friendly diagnostic tool that supports large-scale screening and personalized eye care.

5.3 CHALLENGES AND LIMITATIONS:

1. **Data Quality and Availability:** The accuracy of the CNN model largely depends on the quality, quantity, and diversity of the retinal image dataset. Limited access to well-labeled medical images and variations in imaging conditions (lighting, resolution, or equipment differences) can reduce model performance and generalization.
2. **Computational and Clinical Constraints:** Training deep learning models requires high computational resources and processing power. Additionally, integrating the system into real-world clinical workflows poses challenges such as regulatory approvals, interoperability with medical devices, and ensuring reliability in diverse patient populations.
3. **Model-Related Challenges :** Deep learning models can easily overfit small or imbalanced datasets, reducing their performance on unseen data. Deep neural networks function as "black boxes," making it difficult to explain predictions to clinicians and patients, which hinders clinical trust and adoption. Training high-performance convolutional neural networks (CNNs) requires powerful GPUs and significant processing time.

6. CONCLUSION

The use of Convolutional Neural Networks (CNNs) for detecting retinal diseases from retina images represents a significant advancement in ophthalmic diagnostics, offering enhanced accuracy, efficiency, and scalability. By leveraging the power of deep learning, CNNs can analyze complex patterns in retinal images, enabling early and precise detection of conditions such as diabetic retinopathy, glaucoma, and age-related macular degeneration. This technology not only improves diagnostic capabilities but also facilitates large-scale screening, remote consultations, and integration into clinical workflows, thereby expanding access to quality eye care. However, ongoing efforts are needed to address challenges related to data quality, model interpretability, bias, and integration with existing systems. As these issues are resolved, CNN-based detection systems have the potential to transform retinal disease management, offering significant benefits for patient outcomes and global health.

7. REFERENCES

- [1] M. Venkata Subbarao, J. T S Sindhu, N N S Harshitha, "Detection of Retinal Degeneration via High-Resolution Fundus Images using Deep Neural Networks", 2023 Second International Conference on Electronics and Renewable Systems (ICEARS) | 979-8-3503-4664-0/23/\$31.00 ©2023 IEEE |
DOI: 10.1109/ICEARS56392.2023.10085273
- [2] S. K. M, M. A. V and S. M, "Retinal Image Processing using Neural Network with Deep Learning," 2022 6th International Conference on Intelligent Computing and Control Systems (ICICCS), pp. 1030-1036, 2022.
- [3] P at el, J., Umar, S.A., " Detection of Imagery Vowel Speech Using Deep Learning, Advances in Energy Technology, vol 766, pp. 237–247, 2022.
- [4] P. Kollapudi, S. Alghamdi, N. Veeraiah, Y. Alotaibi, S. Thotakura et al., "A new method for scene classification from the remote sensing images," Computers, Materials & Continua, vol. 72, no.1, pp. 1339– 1355, 2022.
- [5] Venkata Subbarao, M., Sudheer Kumar, T., Chowdary, P.S.R., Chakravarthy, V.V.S.S.S., " Brain Tumor Classification Using Decision Tree and Neural Network Classifiers" Data Engineering and Intelligent Computing, Lecture Notes in Networks and Systems, vol 446 , pp. 405- 412, 2022.
- [6] Caicho, J. et al., " Diabetic Retinopathy: Detection and Classification Using AlexNet , GoogleNet and ResNet50 Convolutional Neural Networks" Smart Technologies, Systems and Applications, Communications in Computer and Information Science, vol 1532, 2022
- [7] P. Kuppusamy, S. Venkatraman, C.A. Rishikeshan, Y.C.A. Padmanabha Reddy, "Deep learning based energy efficient optimal timetable rescheduling model for intelligent road transportation systems, " Physical Communication, Volume 42, 2020.
- [8] Litjens, Geert , et al. "A survey on deep learning in medical image analysis." Medical image analysis 42 (2017): 60-88.
- [9] Chaki, J., Thillai Ganesh, S., Cidham, S.K., Ananda Theertan, S.: Machine learning and artificial intelligence based Diabetes Mellitus detection and self-management: a systematic review. J. King Saud Univ. Comp. Info. Sci. (2020).
- [10] M. M. U. Islam and M. Indiramma, "Retinal Vessel Segmentation using Deep Learning – A Study," 2020 International Conference on Smart Electronics and Communication (ICOSEC), pp. 176-182, 2020.