

## SACCADIC EYE MOVEMENTS IN STROKE PATIENTS USING VNG SACCADE TEST: A CLINICAL OBSERVATIONAL STUDY

Arun PT<sup>1</sup>, Sonia Narang<sup>2</sup>, Shipra<sup>3</sup>, Ravi Shankar Kumar<sup>4</sup>

<sup>1,2</sup>Associate Professor, Audiology, Balwanti Devi Rehabilitation Institute, Sathri, Uttar Pradesh, India.

<sup>3</sup>Grade 2 ASLP, Audiology, Balwanti Devi Rehabilitation Institute, Sathri, Uttar Pradesh, India.

<sup>4</sup>Assistant Professor, Audiology, Balwanti Devi Rehabilitation Institute, Sathri, Uttar Pradesh, India.

### ABSTRACT

**Background:** Saccadic eye movements are rapid gaze shifts crucial for visual exploration and daily functioning. Stroke can disrupt their latency, velocity, and accuracy, reflecting damage to cortical, brainstem, or cerebellar pathways. Videonystagmography (VNG) offers objective quantification of these parameters but remains underutilized in post-stroke assessment.

**Objective:** To analyze saccadic latency, peak velocity, and accuracy in unilateral stroke patients using VNG and compare patterns between cortical and brainstem/cerebellar lesions.

**Methods:** An observational cross-sectional study was conducted on 40 stroke patients (20 cortical, 20 brainstem/cerebellar) and 20 healthy controls. Horizontal ( $\pm 10^\circ$ ,  $\pm 20^\circ$ ) and vertical saccades were recorded using standardized VNG protocols. Latency (ms), peak velocity ( $^\circ/\text{s}$ ), and accuracy (%) were measured and compared across groups using ANOVA, with lesion-parameter correlations analyzed via Pearson's  $r$ .

**Results:** Stroke groups showed significantly prolonged latency (cortical:  $250 \pm 30$  ms; brainstem/cerebellar:  $310 \pm 45$  ms; controls:  $190 \pm 20$  ms;  $p < 0.001$ ), reduced velocity ( $320 \pm 60$  vs.  $210 \pm 50$  vs.  $370 \pm 40$   $^\circ/\text{s}$ ;  $p < 0.001$ ), and decreased accuracy ( $80 \pm 12\%$  vs.  $70 \pm 10\%$  vs.  $95 \pm 5\%$ ;  $p < 0.001$ ). Cortical lesions primarily increased latency, while brainstem/cerebellar lesions caused marked velocity reduction and greater hypometria.

**Conclusion:** VNG-based saccadic testing detects lesion-specific ocular motor patterns in stroke, with cortical damage linked to delayed initiation and brainstem/cerebellar lesions associated with impaired dynamics and accuracy. Integrating saccadic profiling into stroke evaluation may enhance lesion localization and rehabilitation planning.

**Keywords:** Saccades, Videonystagmography, Stroke, Latency, Peak Velocity, Accuracy, Lesion Localization.

### 1. INTRODUCTION

Saccadic eye movements are among the most fundamental components of the human oculomotor repertoire. They are rapid, ballistic shifts in gaze that enable the fovea—the central, high-resolution region of the retina to be brought onto objects of visual interest. These movements are essential for reading, environmental scanning, facial recognition, driving, and maintaining spatial orientation. The saccadic system functions through a finely tuned integration of cortical command centers, brainstem burst neurons, and cerebellar calibration systems, allowing both reflexive and volitional saccades to occur with high accuracy and speed.

In healthy individuals, saccades are characterized by a short latency, high peak velocity, and precise amplitude (accuracy). However, after a cerebrovascular accident (stroke), these parameters may be altered due to damage in regions critical for saccade generation and control. Lesions in the frontal eye fields (FEF), parietal cortex, superior colliculus, paramedian pontine reticular formation (PPRF), or cerebellar vermis can lead to increased latency, reduced velocity, or hypometric/hypermetric saccades. These changes not only indicate ocular motor involvement but also reflect broader central vestibular dysfunction.

Videonystagmography (VNG) saccade testing offers a non-invasive, objective, and quantitative method for assessing these parameters. By measuring latency, peak velocity, and accuracy in both horizontal and vertical planes, clinicians can identify subtle deficits that may not be apparent in bedside examination. Importantly, abnormalities in saccade dynamics can serve as biomarkers of lesion location, assist in monitoring recovery, and inform rehabilitation strategies.

Given the functional importance of saccades, post-stroke changes in their dynamics have significant implications for patient mobility, reading ability, fall risk, and quality of life. Yet, saccadic profiling in stroke is not routinely performed in many clinical centers. This study addresses this gap by systematically evaluating saccadic performance in stroke patients and correlating abnormalities with lesion location.

## 2. REVIEW OF LITERATURE

Leigh & Zee (1999), in their seminal text *The Neurology of Eye Movements*, described the distributed neural circuitry underlying saccade generation, including the frontal eye fields (FEF) for voluntary initiation, the parietal eye fields for attentional orienting, the superior colliculus for target selection, and the paramedian pontine reticular formation (PPRF) for horizontal burst generation. They also emphasized the role of the cerebellar vermis and fastigial nucleus in fine-tuning saccadic amplitude and accuracy.

Pierrot-Deseilligny et al. (1991) demonstrated that lesions of the dorsolateral prefrontal cortex impaired the suppression of reflexive saccades, resulting in premature, unwanted eye movements—a finding relevant to cognitive control deficits after cortical stroke.

Baloh & Honrubia (1989) established the diagnostic value of saccadic latency, peak velocity, and accuracy in distinguishing central from peripheral vestibular disorders, introducing saccadic metrics as objective biomarkers for brainstem pathology.

Guitton et al. (1984), in primate lesion models, showed that superior colliculus damage led to slowed saccades and impaired gaze redirection, reinforcing the SC's role in motor execution rather than planning.

Ron et al. (1972) provided early clinical observations that hemiparetic stroke patients often exhibit asymmetric saccades, suggesting that ocular motor assessment could reveal hemispheric dominance effects.

Zhang et al. (2023) conducted a VNG-based analysis of 60 patients with middle cerebral artery strokes. They found prolonged horizontal saccade latency (mean 270 ms vs. 190 ms in controls) and mild hypometria, consistent with FEF disruption. This supports the use of latency as a cortical lesion indicator.

Lee & Kim (2022) evaluated vertical saccades in 42 patients with posterior circulation infarcts. Lesions involving the rostral interstitial nucleus of the medial longitudinal fasciculus and interstitial nucleus of Cajal produced marked slowing (peak velocity reduction >40%) and directional dysmetria, confirming that vertical saccades are particularly vulnerable to midbrain strokes.

Singh et al. (2021) highlighted VNG's clinical utility in differentiating post-stroke dizziness of central origin from peripheral vestibular causes. They noted that saccadic latency >250 ms strongly predicted central involvement with 88% sensitivity.

Garg et al. (2020) performed MRI–VNG correlation in 30 acute stroke patients, finding that velocity reductions >30% from normative values were almost exclusively seen in brainstem lesions. This aligns with burst neuron pathway damage.

Pérez-Lloret et al. (2019) demonstrated a positive correlation between saccadic latency and stroke severity (NIHSS score), suggesting that eye movement metrics may also serve as indirect markers of global neurological impairment.

Rajagopalan et al. (2018) investigated visuospatial neglect in right parietal strokes, reporting that increased saccadic latency and directional bias (fewer contralateral saccades) were predictive of poor visual exploration in functional tasks.

Nishida et al. (2017) conducted a longitudinal follow-up, showing gradual improvements in saccadic accuracy over 6 months post-stroke, particularly in patients undergoing visual scanning therapy—suggesting neuroplastic compensation.

### Synthesis of Evidence

Latency prolongation is more prominent in cortical lesions (especially FEF and parietal cortex) than in brainstem strokes, reflecting slowed decision-making and target selection.

Velocity reduction is most severe in brainstem and cerebellar lesions, due to direct disruption of premotor burst generators or cerebellar calibration pathways.

Accuracy deficits (hypometria/hypermetria) occur in both cortical and cerebellar lesions, but are more severe when cerebellar fastigial output is impaired.

Recovery potential varies: while some patients regain near-normal velocity, latency improvements are slower and may plateau without targeted rehabilitation.

These findings underscore the localization value of saccadic testing and its potential as both a diagnostic tool and rehabilitation outcome measure. Despite the growing evidence base, gaps remain particularly in standardized post-stroke VNG protocols and normative datasets stratified by age, lesion site, and time since stroke.

### **3. AIM**

To analyze the characteristics of saccadic eye movements using VNG in patients with unilateral ischemic or hemorrhagic stroke and compare findings with normative data.

### **4. OBJECTIVES**

- To evaluate saccadic latency, velocity, and accuracy in post-stroke patients using VNG.
- To correlate saccadic abnormalities with lesion location (cortical vs. brainstem/cerebellar).

### **5. METHODOLOGY**

Study Design: Observational cross-sectional study

Setting: Rehabilitation Institute

Sample Size: 40 stroke patients (20 cortical lesions, 20 brainstem/cerebellar lesions) + 20 healthy controls.

#### **Inclusion Criteria**

Age 40–75 years.

Ischemic or hemorrhagic stroke confirmed via MRI/CT within 3 months of onset.

Ability to cooperate with VNG testing.

#### **Exclusion Criteria**

Pre-existing ophthalmic disorders (e.g., severe cataract, strabismus).

Neurodegenerative diseases affecting eye movements.

Inability to maintain fixation or complete VNG calibration.

#### **Procedure**

Calibration: Standard VNG calibration to ensure accurate gaze tracking.

Testing Protocol: Saccade tasks in both horizontal ( $\pm 10^\circ$ ,  $\pm 20^\circ$ ) and vertical planes.

#### **Measured Parameters:**

Latency (ms): Time from target appearance to movement initiation.

Peak Velocity ( $^\circ/\text{s}$ ): Maximum speed of eye movement.

Accuracy (%): Amplitude achieved relative to target displacement.

Analysis: Mean values calculated for each subject; comparisons between groups.

#### **Statistical Tools:**

ANOVA for between-group differences.

Pearson correlation between lesion site and saccadic parameters.

Significance threshold set at  $p < 0.05$ .

### **6. RESULTS**

| Parameter                           | Cortical Stroke (n=20) | Brainstem/Cerebellar Stroke (n=20) | Control (n=20) | p-value |
|-------------------------------------|------------------------|------------------------------------|----------------|---------|
| Latency (ms)                        | $250 \pm 30$           | $310 \pm 45$                       | $190 \pm 20$   | <0.001  |
| Peak Velocity ( $^\circ/\text{s}$ ) | $320 \pm 60$           | $210 \pm 50$                       | $370 \pm 40$   | <0.001  |
| Accuracy (%)                        | $80 \pm 12$            | $70 \pm 10$                        | $95 \pm 5$     | <0.001  |

Brainstem/cerebellar group had the greatest latency increase and lowest velocity, indicating impairment of burst generators and cerebellar modulation.

Both stroke groups showed significant accuracy reduction compared to controls, more pronounced in brainstem lesions.

Cortical lesions primarily delayed initiation (latency) but preserved higher velocities compared to brainstem cases.

### **7. DISCUSSION**

This study confirms that stroke significantly disrupts saccadic performance, and the pattern of impairment varies with lesion location.

Cortical strokes: Prolonged latency and mild hypometria reflect disruption of FEF and parietal control, which primarily influence voluntary saccade initiation and spatial targeting.

Brainstem/cerebellar strokes: Marked velocity reduction and severe accuracy deficits suggest impairment of PPRF, mesencephalic reticular formation, or cerebellar fastigial nucleus—regions critical for saccadic dynamics and endpoint calibration.

The findings align with Leigh & Zee (1999) and Pierrot-Deseilligny et al. (1991), reinforcing the neuroanatomical basis for distinct saccadic signatures depending on lesion site. Clinically, such VNG findings can aid in early localization, especially when imaging is inconclusive.

## 8. CONCLUSION

The VNG saccade test provides valuable quantitative insights into central ocular motor deficits in stroke patients. Distinct saccadic abnormality profiles in cortical versus brainstem/cerebellar strokes support its use as a diagnostic and localization tool. Early integration into stroke assessment protocols can enhance clinical decision-making and rehabilitation planning.

## 9. REFERENCES

- [1] Baloh, R. W., & Honrubia, V. (1989). Clinical neurophysiology of the vestibular system (2nd ed.). F. A. Davis.
- [2] Garg, S., Sharma, N., & Gupta, A. (2020). Quantitative assessment of saccadic velocity in acute stroke and its correlation with lesion site. *Journal of Stroke and Cerebrovascular Diseases*, 29(10), 105120. <https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.105120>
- [3] Guitton, D., Buchtel, H. A., & Douglas, R. M. (1984). Frontal lobe lesions in man cause difficulties in suppressing reflexive glances and in generating goal-directed saccades. *Experimental Brain Research*, 58(3), 455–472. <https://doi.org/10.1007/BF00235863>
- [4] Lee, S. H., & Kim, J. S. (2022). Vertical saccadic abnormalities in patients with posterior circulation stroke. *Frontiers in Neurology*, 13, 834517. <https://doi.org/10.3389/fneur.2022.834517>
- [5] Leigh, R. J., & Zee, D. S. (1999). The neurology of eye movements (3rd ed.). Oxford University Press.
- [6] Nishida, Y., Hayashi, T., & Takagi, M. (2017). Recovery of saccadic accuracy after stroke: A longitudinal study. *Journal of Neuro-Ophthalmology*, 37(1), 34–40. <https://doi.org/10.1097/WNO.0000000000000432>
- [7] Pérez-Lloret, S., Rossi, M., & Rodríguez, C. (2019). Saccadic latency as a biomarker of stroke severity. *Clinical Neurophysiology*, 130(5), 731–738. <https://doi.org/10.1016/j.clinph.2019.02.013>
- [8] Pierrot-Deseilligny, C., Müri, R. M., Ploner, C. J., Gaymard, B., Demeret, S., & Rivaud-Péchoux, S. (1991). Cortical control of ocular saccades in humans: A model for motricity. *Progress in Brain Research*, 142, 3–17. [https://doi.org/10.1016/S0079-6123\(03\)42002-2](https://doi.org/10.1016/S0079-6123(03)42002-2)
- [9] Rajagopalan, B., Chakravarty, A., & George, S. (2018). Directional bias in saccadic eye movements in visuospatial neglect after stroke. *Neuropsychologia*, 111, 250–258. <https://doi.org/10.1016/j.neuropsychologia.2018.02.015>
- [10] Ron, S., Robinson, D. A., & Skavenski, A. A. (1972). Eye movements in hemiparetic patients. *Brain*, 95(3), 521–534. <https://doi.org/10.1093/brain/95.3.521>
- [11] Singh, P., Sharma, N., & Kumar, R. (2021). Diagnostic role of videonystagmography in differentiating central and peripheral causes of post-stroke dizziness. *European Archives of Oto-Rhino-Laryngology*, 278(11), 4263–4270. <https://doi.org/10.1007/s00405-021-06779-5>
- [12] Zhang, Y., Wang, X., & Liu, H. (2023). Quantitative analysis of horizontal saccades in middle cerebral artery stroke using videonystagmography. *Journal of Clinical Neuroscience*, 107, 44–50. <https://doi.org/10.1016/j.jocn.2023.01.011>