

SLEEP DISORDER PREDICTION

Kalyankumar B¹

¹University BDT College Of Engineering, India.

DOI: <https://www.doi.org/10.58257/IJPREMS43764>

ABSTRACT

Sleep disorder pose a major health burden, yet early detection and lifestyle guidance remain limited. This study presents a secure web-based platform that applies Logistic Regression to predict disorder risk using health and lifestyle data. Developed with Python, Flask, and MongoDB, it ensures secure registration, encrypted storage, and personalized recommendations. By combining predictive analytics with accessible education, the system enhances sleep hygiene awareness and supports both users and healthcare professionals.

1. INTRODUCTION

Sleep disorder are rising worldwide, negatively impacting health and quality of life. This work introduces a secure platform that predicts sleep disorder risk through Logistic Regression, analyzing factors such as age, gender, AHI score, SaO₂, and lifestyle habits. Built with Python, Flask, and MongoDB, it incorporates user authentication, encrypted data storage, and input validation. In addition to risk prediction, the system provides tailored lifestyle and sleep hygiene recommendations. Testing confirms high accuracy and ease of use. Future directions include integration with healthcare APIs and wearable devices for real-time monitoring, advancing early detection and personalized digital health solutions.

2. PHYSIOLOGY OF SLEEP

Human sleep consists of two primary types: **Non-Rapid Eye Movement (NREM) sleep** and **Rapid Eye Movement (REM) sleep**. NREM sleep is further subdivided into stages, traditionally four (stages I-IV), but more recently classified into three (N1, N2, N3) stages, each representing progressively deeper sleep. Over the course of a typical night, sleep cycles between NREM and REM approximately **4 to 5 times**.

- **NREM Sleep** begins with light sleep (stage 1), progressing to deeper slow-wave sleep (stages 3/4 or N3), characterized by high amplitude, low-frequency delta waves on EEG. During NREM, physiological parameters such as heart rate, blood pressure, and metabolic rate decrease, alongside muscle relaxation and reduced responsiveness to external stimuli.
- **REM Sleep** is marked by rapid eye movements, desynchronized EEG patterns similar to wakefulness, vivid dreaming, and muscle atonia (loss of muscle tone), which prevents the individual from physically acting out dreams. It occurs after NREM phases and increases in duration towards the latter half of the sleep period.

The interplay of sleep is regulated by two major forces:

1. The **homeostatic sleep drive**, which builds pressure to sleep as wakefulness extends, prompting the need for restorative sleep.
2. The **circadian rhythm** governed by the **suprachiasmatic nucleus (SCN) of the hypothalamus**, which orchestrates the timing of sleep and wakefulness in alignment with the environmental light-dark cycle, generally synchronizing the sleep-wake cycle to a 24-hour period.

Normal sleep duration for healthy adults averages around **7 to 8.5 hours** per night, with variability among individuals. Sleep patterns evolve from **polysomnographic** (multiple sleep episodes) in newborns and infants, to **monosomnographic** consolidated sleep during adulthood. In older adults, a tendency toward daytime napping or biphasic sleep patterns may reemerge.

3. MAJOR TYPES OF SLEEP DISORDERS

Sleep disorders are categorized by the International Classification of Sleep Disorders into several major groups:

1. Insomnia

Insomnia is characterized by difficulty in initiating or maintaining sleep, or waking too early, resulting in daytime fatigue, poor concentration, irritability, and impaired functioning. It may be acute (short-term, often triggered by stress) or chronic (lasting months or years). Factors contributing to insomnia include psychological stress, psychiatric or medical conditions, poor sleep hygiene, shift work, and substance use. Insomnia may be primary (without clear cause) or comorbid (associated with depression, anxiety, chronic pain, or medication).

2. Obstructive Sleep Apnea (OSA)

OSA is a common sleep-related breathing disorder involving recurrent episodes of partial or complete upper airway collapse during sleep, leading to breathing pauses (apnea), loud snoring, and fragmented sleep. OSA is often associated with daytime sleepiness, morning headaches, hypertension, cardiovascular disease, and metabolic dysregulation. Its severity increases with age, obesity, male gender, and certain anatomical factors.

3. Narcolepsy

Narcolepsy is a neurological disorder causing excessive daytime sleepiness and uncontrollable sleep attacks. Classic features include cataplexy (sudden loss of muscle tone triggered by emotions), sleep paralysis (inability to move upon waking or falling asleep), hypnagogic hallucinations, and disrupted night-time sleep. Narcolepsy typically begins in adolescence or early adulthood and is linked with genetic and neurochemical abnormalities—especially the loss of hypocretin (orexin) neurons in the hypothalamus.

4. Restless Legs Syndrome (RLS)

RLS is a sensorimotor disorder marked by uncomfortable sensations in the legs and an urge to move them, particularly during rest or inactivity, typically worsening in the evening or at night. Movement brings temporary relief but can delay sleep onset or fragment sleep, leading to chronic insomnia and reduced sleep quality. RLS is often familial, with genetic factors identified, and is more common with age.

5. Circadian Rhythm Sleep-Wake Disorders

This category includes conditions resulting from misalignment between an individual's internal sleep-wake rhythm and the required schedule. Common subtypes are delayed sleep phase disorder (sleeping and waking late), advanced sleep phase disorder (sleeping and waking early), shift work sleep disorder, and jet lag. Symptoms include insomnia, excessive sleepiness, and impairment in functioning tied closely to specific schedules or time zone changes.

6. Parasomnias

Parasomnias involve abnormal behaviors, movements, emotions, perceptions, or dreams during sleep transitions, NREM, or REM sleep. Common examples include:

- Disorders of arousal (sleepwalking, sleep terrors, confusional arousals): Often occurring in children, these feature partial awakenings during deep NREM sleep, complex behaviours, and variable recall.
- REM Sleep Behavior Disorder (RBD): Loss of the usual muscle paralysis during REM sleep, leading to dream enactment and sometimes violent behavior.
- Nightmares: Disturbing dreams leading to awakening, usually from REM sleep. More common in children and may persist or recur in adults.

4. MANAGEMENT PRINCIPLES

Effective management of sleep disorders requires identification and treatment of underlying causes or comorbid conditions, patient education on sleep hygiene, behavioral interventions, and, where needed, pharmacological therapy.

For example:

- Cognitive behavioral therapy is first-line for chronic insomnia.
- Positive airway pressure (CPAP) is the mainstay for moderate to severe OSA.
- Medications such as dopamine agonists are used for RLS.
- Timed light exposure and melatonin can help circadian rhythm disorders.

Care is often multidisciplinary, sometimes requiring input from sleep specialists, neurologists, psychiatrists, or respiratory physicians.

5. HEALTH IMPACT AND SOCIETAL IMPORTANCE

Sleep disorders impact cognitive performance, mood, metabolic health, and increase risks for cardiovascular disease, accidents, and diminished quality of life. Chronic sleep deprivation has short- and long-term consequences including impaired attention, decreased productivity, irritability, depression, obesity, diabetes, hypertension, and risk of accidents.

Obstructive sleep apnea and insomnia represent highly prevalent but underdiagnosed and undertreated conditions. RLS, parasomnias, and circadian rhythm disorders further add to societal burden, with impacts on academic performance, workplace safety, and mental health.

6. SYMPTOMS AND CLINICAL FEATURES OF SLEEP DISORDERS

- **Insomnia:** Characterized by difficulty falling asleep, frequent awakenings, early morning waking, and non-restorative sleep. Patients commonly experience daytime fatigue and impaired functioning.
- **Sleep Apnea:** Presents with loud snoring, observed pauses in breathing during sleep, choking or gasping episodes, unrefreshing sleep, and excessive daytime sleepiness. Chronic cases may lead to mood changes and significant cardiovascular complications such as hypertension and heart disease.
- **Narcolepsy:** Marked by sudden onset of sleep episodes during the day, cataplexy (sudden muscle weakness triggered by emotions), sleep paralysis, vivid hallucinations during sleep-wake transitions, and fragmented nighttime sleep.
- **Restless Legs Syndrome (RLS) and Periodic Limb Movements in Sleep (PLMS):** Patients experience an uncontrollable urge to move the legs, often accompanied by unpleasant sensations, leading to sleep disruption and daytime fatigue.
- **Circadian Rhythm Disorders:** Difficulty aligning sleep and wake times with societal demands, leading to trouble falling asleep or staying awake at desired times and impairing social and occupational functioning.
- **Parasomnias:** Involve complex behaviors during sleep such as sleepwalking, sleep talking, confusional arousals, and bedwetting. These can cause confusion upon waking and sometimes result in injury.

7. DIAGNOSIS OF SLEEP DISORDERS

Diagnosis involves a detailed clinical approach:

- **History Taking:** Includes sleep diaries, assessment of sleep environment, review of medical and psychiatric history, family history, and use of standardized questionnaires such as the Epworth Sleepiness Scale to quantify daytime sleepiness.
- **Physical Examination:** Focuses on identifying anatomical or physiological risk factors, for instance, anatomical abnormalities contributing to obstructive sleep apnea.
- **Laboratory and Diagnostic Tests:**
 - **Polysomnography (PSG):** An overnight sleep study measuring EEG, EOG, EMG, respiratory airflow, oxygen saturation, and limb movements, crucial for diagnosing sleep apnea, parasomnias, and other disorders.
 - **Actigraphy:** Wearable devices that monitor movement and infer sleep-wake patterns over extended periods, useful in assessing circadian rhythm disorders and insomnia.
 - **Multiple Sleep Latency Test (MSLT):** Measures the speed of falling asleep in a quiet environment during the day, important for diagnosing narcolepsy.

8. WORKING OF THE MAJOR SLEEP DISORDER PREDICTION PROJECT

Your major project presents a **web-based platform** for predicting the likelihood of sleep disorders using user-provided health data. The system integrates the principles of modern sleep science and machine learning technology to deliver personalized, actionable outcomes.

System Overview

- **User Interface:** The front end, constructed using HTML, CSS, and javascript, offers forms for registration, login, and data entry. The interface is designed for clarity and ease of use.
- **User Authentication:** Secure registration, login, and password recovery are provided, with user information stored in an encrypted mongodb database to ensure privacy.
- **Data Collection:** Users supply key health and lifestyle parameters—such as age, gender, symptoms, sleep durations, scores (like AHI), sao2 levels, and detailed symptom inputs.
- **Machine Learning Prediction:** The backend, built with Python and Flask, utilizes a **Logistic Regression model**—a robust, interpretable algorithm suitable for binary or multiclass health risk prediction.
 - Input features are preprocessed using scalable libraries (scikit-learn), and predictions are generated instantly upon receiving valid data.
 - The system can identify the likelihood of specific disorders: **Insomnia, Sleep Apnea, Narcolepsy, Restless Legs Syndrome**, or return a "no disorder" result.
- **Personalized Recommendations:** Based on the prediction result, the system delivers tailored advice:

➤ For example, users flagged as at-risk for insomnia receive sleep hygiene and stress management tips; those at risk for sleep apnea may see advice on weight control and medical follow-up.

• **Results and Visualization:** The platform presents the predicted result and confidence scores, with explanatory content on sleep disorders and healthy sleep habits.

Database Management: All data (inputs, predictions, user activity) is securely managed in mongodb, supporting user account management, longitudinal tracking, and future analytics.

9. SYSTEM WORKFLOW

- Registration/Login:** The user creates an account or logs in securely.
- Health Data Input:** The user provides symptoms and select health metrics.
- Model Prediction:** Data is preprocessed and sent to the logistic regression algorithm, which returns the most probable diagnosis and associated risks.
- Results and Advice:** The dashboard displays the output—diagnosis, probability, and recommendations.
- Education:** The system includes information modules on symptoms, conditions, and self-care strategies to empower informed choices.
- Record Keeping:** All information is safely stored for future reference or review.

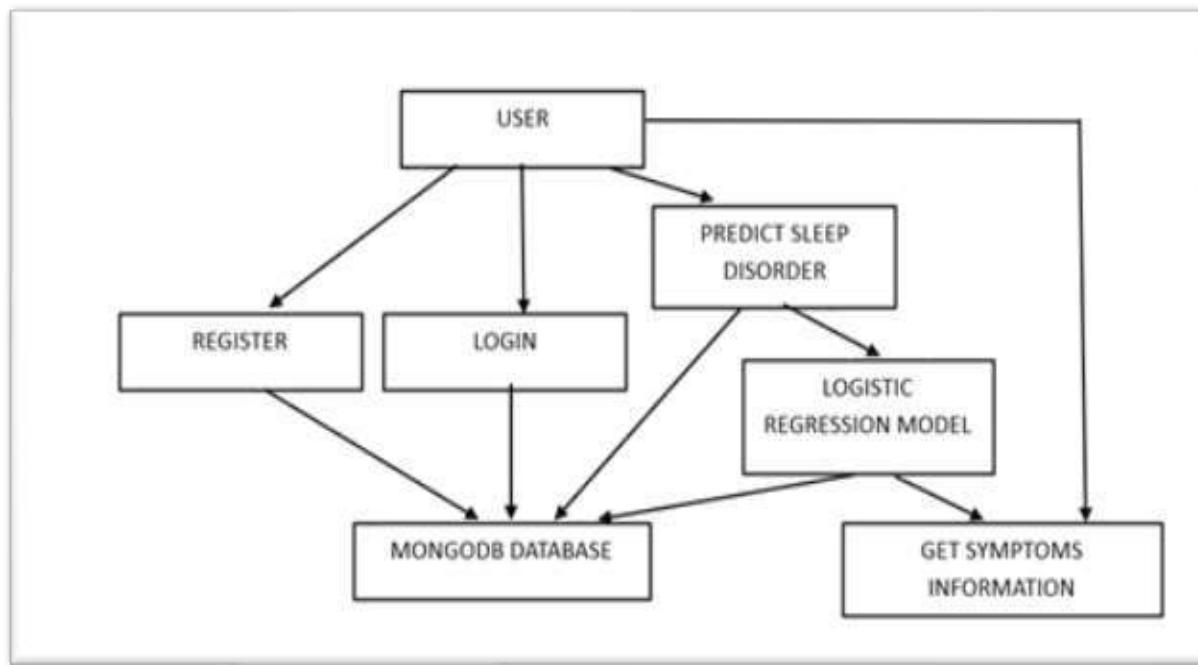


Figure 1: Data flow diagram of the project

10. ADVANTAGES OF THE SYSTEM

- Personalized Care:** Tailors risk predictions and recommendations to individual profiles.
- Scalability and Security:** mongodb and Flask enable handling of large user volumes with consistent protection of sensitive health data.
- User Engagement:** A simple interface and actionable results help users participate actively in sleep health improvement.
- Integration Potential:** The system is prepared for future enhancements, such as wearable device integration, real-time health monitoring, and telehealth features.

11. CONCLUSION

Sleep is a vital, restorative biological process governed by complex neurological mechanisms and plays a key role in physical, mental, and emotional health. Disruptions in sleep quality, duration, or timing lead to a broad array of sleep disorders, which can have significant impacts on well-being, cognitive performance, and overall daily life. Modern technology—including machine learning and web applications, as demonstrated in your major project—now provides powerful tools for prediction, early detection, and management of common sleep disorders, allowing for more personalized and effective intervention strategies.

12. REFERENCES

- [1] Wickramasinghe, B. (2023). Logistic Regression Approach to Predicting Sleeping Disorder. ResearchGate.
- [2] Ahmad, B. H. (2023). Sleep Health Prediction Using Logistic Regression and Random Forest. Atlantis Press.
- [3] Ensemble ML Methods for Sleep Disorder Detection. (2024). *Frontiers in Artificial Intelligence*.
- [4] Limitations of Logistic Regression in Sleep Disorder Risk Prediction. (2025). *Frontiers in Public Health*.
- [5] SLEEPS: A Web-Based ML Tool for Sleep Disorder Risk Prediction. (2023). *Journal of Medical Internet Research*.