

SMART CONTRACT APPLICATION IN BLOCKCHAIN TECHNOLOGY

Dr. Dinesh D. Puri¹, Miss. Shital G. Attarkar²

¹Head Of Department, Department Of Computer Applications, SSBT COET, Jalgaon Maharashtra, India.

²Research Scholar, Department Of Computer Applications, SSBT COET, Jalgaon Maharashtra, India.

DOI: <https://www.doi.org/10.58257/IJPREMS43895>

ABSTRACT

A new method for secure, transparent, and decentralized digital transactions has come from blockchain technology. One of the key developments is smart contracts. These are agreements that automatically execute when the set conditions in the code are met. Unlike traditional contracts, which require intermediaries like banks, law firms, or notaries, smart contracts operate on their own. This research looks into the use of smart contracts in various areas, including finance, supply chain management, healthcare, real estate, governance, and intellectual property management. It also points out the challenges related to security issues and scalability. The research concludes that while smart contracts have great potential to change digital transactions and institutional operations, their widespread use will depend on clear regulations and improved technology.

1. INTRODUCTION

Nick Szabo originally proposed the idea of smart contracts in the 1990s, defining them as "a set of promises, specified in digital form, including protocols through which the parties fulfill these promises." However, blockchain technology was the only thing that made smart contracts feasible. Without relying on centralized authorities, blockchain provides a decentralized, immutable ledger that guarantees security, transparency, and trust. Blockchain's capabilities have been expanded by platforms such as Ethereum, Hyperledger Fabric, and Cardano, which allow programmable contracts to automate intricate procedures.

Businesses are searching for ways to cut costs, eliminate middlemen, and increase productivity in a world that is quickly adopting digital technology. Smart contracts, which facilitate automatic, direct transactions between parties, satisfy these requirements. For example, in finance, smart contracts enable decentralized financing without the need for banks, and in supply chain management, they make it easier for multiple stakeholders to track commodities. This study looks at the current state of smart contract applications, reviews pertinent literature, and discusses future issues and potential lines of inquiry.

2. LITERATURE SURVEY ON SMART CONTRACT APPLICATIONS

Blockchain-based smart contracts are gaining traction in both industry and research. This study looks at how the idea has changed over time, from the early studies that laid its groundwork to the more recent ones that focus on real-world applications, based on the references provided.

1. Foundational Work

In Vitalik Buterin first introduced Ethereum, a blockchain platform that goes beyond digital currency, in 2014. Unlike Bitcoin, which was mainly used for cryptocurrencies, Ethereum allowed for the creation of decentralized applications (dApps) with programmable smart contracts, which are agreements that function automatically without outside intervention. The Ethereum White Paper, which focused on eliminating middlemen and establishing the foundation for future growth in smart contract research and applications, summed up this objective.

2. Smart Contracts in IoT

In Christidis and Devetsikiotis (2016) looked into how blockchain technology could work with the Internet of Things (IoT). They proposed that smart contracts could increase the autonomy and confidence of machine-to-machine (M2M) communication, allowing machines to securely handle transactions without the need for human intervention. Their research not only demonstrated practical applications in areas such as logistics, energy trading, and supply chain management, but also demonstrated that scalability and performance issues remain significant challenges in the implementation of smart contracts on the Internet of Things.

3. Legal and Technical Limitations

In Mik (2017) looked into the disparity between smart contracts' theoretical promise and the real-world challenges they face. The study found that while smart contracts are useful for automating procedures and enforcing laws, they usually fail to capture the complexity of real contracts. Among the issues raised were legal enforceability, dispute resolution, and the rigidity of code-based contracts. Mik's work is important because it reminds us that putting smart

contracts into practice requires more than just technical solutions; social and legal issues need to be taken into account as well.

4. Broader Applications and Challenges

In 2019, Wang and associates thoroughly examined the design, functionality, and applications of blockchain-powered smart contracts in a number of industries. They drew attention to issues like scalability, security flaws, and interoperability in addition to highlighting practical applications in sectors like healthcare, supply chain management, and finance. By showing the connection between the technical design and real-world applications, their work provides a fair and transparent viewpoint on smart contracts.

5. Sector-Specific Application in Healthcare

In 2020, Omar and his colleagues looked at how smart contracts might change the way healthcare is provided. They recommended using blockchain technology to streamline insurance claims, securely exchange medical data, and automate important processes like managing patient consent. Their findings suggest that smart contracts may enhance healthcare's efficacy, dependability, and transparency. However, they also underlined that in order for these benefits to be realized, adoption must be compliant with existing laws and moral standards.

3. APPLICATIONS OF SMART CONTRACTS

1. Finance and Banking

The financial industry continues to be the most active use case for smart contracts. Peer-to-peer financing in Decentralized Finance (DeFi), automated market makers, and decentralized exchanges are all supported by these contracts. They make it possible to issue collateralized loans without banks getting involved, which makes transactions faster, cheaper, and more transparent. Insurance companies are also using smart contracts to automate the claims processing process. By automatically triggering payouts based on verified events, this lowers errors, fraud, and delays.

2. Supply Chain Management

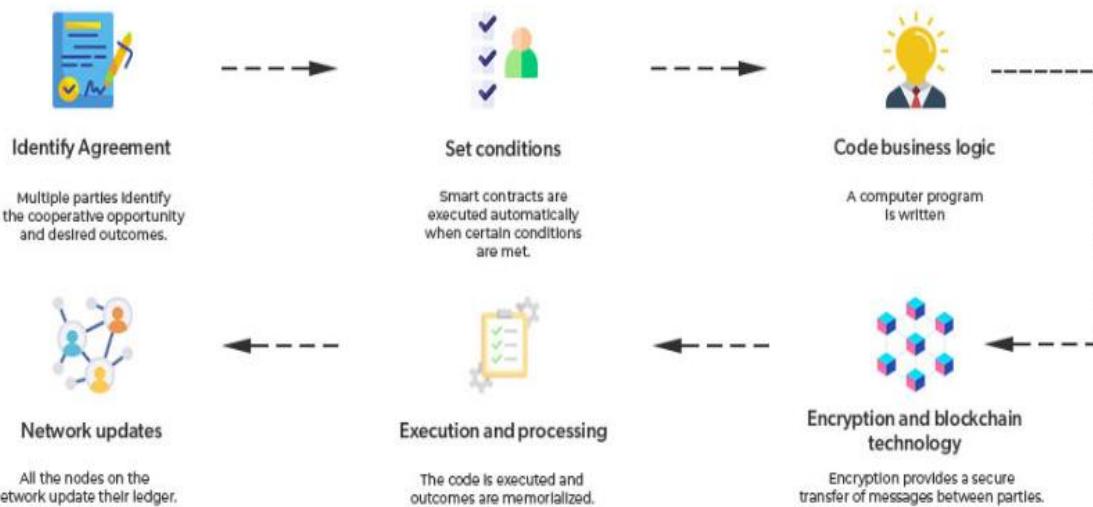
Openness and trust are especially important in supply chains because they usually involve a lot of stakeholders. Smart contracts help to improve accountability by recording every step of a product's journey on the blockchain. In the food industry, for instance, this means that goods can be tracked from farms to store shelves, reducing the likelihood of fakes and ensuring their genuineness. Large companies such as IBM and Walmart have already experimented with blockchain supply chain systems, reducing the time needed to track the origins of food from days to a few seconds.

3. Healthcare

Safe data sharing between hospitals, insurers, and patients is made possible by smart contracts. By effectively controlling access to patient medical records stored on a blockchain, smart contracts can preserve privacy and stop misuse. By helping to stop counterfeit drugs, they can also enhance pharmaceutical supply chains. Additionally, insurance claims settlement can be automated with smart contracts, speeding up the process and reducing delays in patient care.

4. Real Estate

Buying and selling real estate usually involves a lot of paperwork and middlemen like brokers and notaries. Smart contracts can simplify this process by allowing the buyer and seller to directly transfer property rights. Once the blockchain verifies the payment, the ownership record is automatically updated. This reduces costs and the likelihood of fraud in real estate transactions while also speeding up the process.


5. Governance and Voting

Governments and organizations are testing blockchain-based voting techniques to improve election security and transparency. With the help of smart contracts, votes can be safely recorded, accurately tallied, and protected from manipulation after they are cast. The effectiveness of this approach has already been shown by pilot projects in countries like Estonia and Switzerland, which have raised trust in the democratic process.

6. Intellectual Property and Digital Rights

Digital producers, musicians, and artists can easily receive automatic payments when their work is used or purchased thanks to smart contracts. An author might, for example, publish an e-book on a blockchain platform, where each purchase would instantly transfer money and register the new owner. This protects against copyright violations and guarantees that artists are fairly compensated for their work.

How does a Smart Contract Work?

4. CHALLENGES

1. Scalability

Public blockchains, like as Ethereum, struggle to handle many transactions at once. The network frequently slows down and customers are charged additional transaction fees, also referred to as gas prices, when activity on the network increases.

2. Security Vulnerabilities

Smart contract flaws can lead to large financial losses, as the 2016 DAO breach, in which millions of dollars were stolen because of a coding error, showed. Because smart contracts cannot be readily updated or fixed once they are deployed on the blockchain, unlike standard software, fixing errors in them is much more difficult.

3. Legal and Regulatory Issues

Due to a lack of clear regulations, smart contracts are not yet accepted as enforceable by the majority of legal systems, even though they function under decentralized systems. There are still unanswered questions about who is responsible in the event of a problem, how disputes should be resolved, and how these contracts comply with the law as it stands.

4. Interoperability

Smart contracts struggle to communicate across networks because different blockchain platforms, like Ethereum, Hyperledger, and Cardano, function independently of one another. Standardization is required to enable smooth communication between chains.

Potential Challenges and Limitations of Smart Contracts

5. Privacy Concerns

One of blockchain's biggest benefits is transparency, but it can cause issues when dealing with sensitive information like medical records. Storing such data on a public blockchain carries serious privacy risks. Novel strategies that maintain anonymity while retaining the benefits of transparency, like zero-knowledge proofs, are being researched to address this.

5. CONCLUSION

Smart contracts, which make agreements transparent, automated, and free from the need for third-party trust, are a significant advancement in the digital economy. The fact that they are already in use in industries like finance, healthcare, supply chains, real estate, government, and even the creative industries shows how adaptable they are at modernizing outdated systems. But before smart contracts can be used extensively, important problems like scalability, legal recognition, interoperability, and security still need to be fixed. Future research should focus on standardized frameworks, safer coding practices, and hybrid models that combine blockchain technology with existing institutional and legal frameworks. If these advancements are realized, smart contracts have the potential to completely transform global governance and trade.

6. REFERENCES

- [1] Buterin, V. (2014). A Next-Generation Smart Contract and Decentralized Application Platform. Ethereum White Paper.
- [2] Christidis, K., & Devetsikiotis, M. (2016). Blockchains and smart contracts for the Internet of Things. *IEEE Access*, 4, 2292-2303.
- [3] Mik, E. (2017). Smart contracts: terminology, technical limitations and real-world complexity. *Law, Innovation and Technology*, 9(2), 269-300.
- [4] Wang, S., Ouyang, L., Yuan, Y., Ni, X., Han, X., & Wang, F. (2019). Blockchain-enabled smart contracts: architecture, applications, and future trends. *IEEE Transactions on Systems, Man, and Cybernetics: Systems*, 49(11), 2266-2277.
- [5] Omar, I. A., Jayaraman, R., Debe, M. S., Salah, K., & Omar, M. (2020). Automating healthcare services on the blockchain using smart contracts. *IEEE Access*, 8, 136418-136438