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ABSTRACT 

Nanotechnology has revolutionized drug delivery through the engineering of nanoscale materials that facilitate 

precise, controlled, and targeted release of therapeutic agents. In the last ten years, notable progress in the design of 

nanocarriers—such as lipid nanoparticles, polymeric nanoparticles, dendrimers, metallic nanoparticles, and 

biomimetic systems—has broadened possibilities for clinical application. The effective use of lipid nanoparticle 

(LNP)-based mRNA COVID-19 vaccines showcased the scalability and practical effectiveness of nano-drug delivery 

systems, spurring global research and investment. Nevertheless, obstacles like toxicity issues, unclear regulatory 

pathways, inconsistent reproducibility, and variability in tumor targeting (such as inconsistencies in the EPR effect) 

continue to hinder widespread adoption. This review highlights advancements in science, progress in clinical settings, 

existing challenges, and the future potential of nanotechnology-based targeted drug delivery. 

Keywords: Nanotechnology, Targeted Drug Delivery, Lipid Nanoparticles, Cancer Therapy, Stimuli-Responsive 

Systems. 

1. INTRODUCTION 

Conventional methods of drug delivery encounter significant challenges including non-specific distribution, low 

bioavailability, short circulation time, and toxicity related to dosage. Targeted drug delivery enhances therapeutic 

precision by directing medications to affected tissues while reducing systemic adverse effects (6). Nanotechnology 

significantly contributes to the enhancement of targeted therapies by employing carriers at the nanoscale, typically 

ranging from 10 to 200 nanometers, which can interact with cellular and molecular structures, traverse biological 

barriers, and facilitate controlled release mechanisms (7,8). Recent adva ncements in nanomedicine from 2015 to 2025 

comprise innovations such as lipid-based mRNA delivery systems, peptides designed to penetrate tumors, biomimetic 

vesicles, and nanoplatforms that respond to stimuli (9,10). 

 

Figure 1: Overview of traditional vs. nanotechnology-based drug delivery pathways 
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PRINCIPLES OF TARGETED DELIVERY USING NANOTECHNOLOGY 

Size, Shape & Surface Chemistry 

Particle size affects biodistribution, clearance, and cellular uptake. Nanocarriers between 50–150 nm demonstrate 

prolonged circulation and improved cellular entry (11). Surface charge influences interaction with biological 

membranes; PEGylation is used to improve circulation by avoiding immune recognition (12). 

Passive Targeting and EPR Effect 

Passive targeting uses features of dysfunctional vasculature seen in tumors, enabling nanoparticle accumulation via the 

Enhanced Permeability and Retention (EPR) effect (13). However, research between 2019–2024 suggests EPR 

response varies between patients and tumor types, challenging earlier assumptions (14). 

 

Figure 2: Mechanism of EPR effect in solid tumors 

Active Targeting 

Active targeting includes surface modification with ligands such as antibodies, aptamers, folate, or transferrin, 

enabling receptor-mediated uptake (15,16). 

Smart and Stimuli-Responsive Systems 

Stimuli-responsive nanocarriers can release drugs in response to pH, enzymes, redox environment, ultrasound, light, 

or temperature (17,18). 

 

Figure 3: Mechanism of internal (pH) and external (light/heat) responsive nanocarriers 
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TYPES OF NANOCARRIERS IN TARGETED DRUG DELIVERY 

1. Lipid Nanoparticles (LNPs 

2. Polymeric Nanoparticles 

3. Dendrimers 

4. Metallic Nanoparticles 

5. Carbon-Based Nanostructures 

6. Biomimetic Nanocarriers 

Lipid Nanoparticles (LNPs) 

LNPs became a milestone following success in mRNA vaccines. Ionizable lipid chemistry enables improved 

endosomal escape and reduced toxicity (19,20). 

Polymeric Nanoparticles 

Biodegradable polymers such as PLGA, chitosan, and PEG enable controlled release and reduced toxicity (21). 

Dendrimers 

These highly branched carriers allow multivalent conjugation and are used in cancer and gene delivery applications 

(22). 

Metallic Nanoparticles 

Gold, silver, and iron oxide nanoparticles are used in diagnostics, imaging, gene delivery, and photothermal therapy 

(23,24). 

Carbon-Based Nanostructures 

Carbon nanotubes and graphene possess high drug-loading capabilities but require toxicity modification strategies 

(25). 

Biomimetic Nanocarriers 

Recent research focuses on exosomes and cell-membrane-coated nanoparticles to evade immune clearance (26,27). 

Table 1: Comparison of major nanocarrier types, advantages, and clinical status 

Sr. 

No. 

Nanocarrier 

Type 
Structure/ Composition Advantages Clinical Status 

1) 

Lipid 

Nanoparticles 

(LNPs 

 

Spherical vesicles or solid 

cores made of lipids 

(phospholipids, cholesterol, 

ionizable lipids). Includes 

Liposomes and Solid Lipid 

Nanoparticles (SLNs). 

Highest clinical success; 

Biocompatible and biodegradable; 

excellent for delivering 

mRNA/siRNA (e.g., COVID-19 

vaccines); good for 

hydrophilic/hydrophobic drugs; 

low immunogenicity. 

Multiple FDA-

approved formulations 

(e.g., Doxil, Onpattro, 

Comirnaty/Spikevax 

mRNA vaccines). 

Broad use in infectious 

disease and oncology.  

2) 
Polymeric 

Nanoparticles 

Solid colloidal particles 

(nanospheres/nanocapsules) 

or self-assembled micelles 

from biocompatible and 

biodegradable polymers (e.g., 

PLGA, PLA, PEG). 

Precise controlled/sustained 

release kinetics; high stability; 

high drug loading capacity; 

excellent platform for active 

targeting through surface 

functionalization. 

Several formulations 

are FDA-approved 

(e.g., Abraxane – 

albumin-bound) or in 

Phase I-III clinical 

trials for various 

cancers and diseases. 

3) Dendrimers 

Highly branched, synthetic 

macromolecules with a central 

core and numerous, 

controllable surface functional 

groups. 

Monodisperse (uniform 

size/shape); high surface area for 

multi-functionalization (drug, 

targeting, imaging agent); water-

soluble and biocompatible. 

Mainly in pre-clinical 

development, with a 

few in early Phase I/II 

clinical trials for drug 

and gene delivery, and 

topical microbicides. 

4) Metallic Solid particles typically made Excellent stability; unique Primarily in pre-
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Nanoparticles of Gold (Au) or Silver (Ag), 

often with a functionalized 

surface coating. 

optical/electronic properties for 

imaging (CT, photothermal) and 

localized therapy (light/heat 

conversion); can be used as 

radiosensitizers. 

 

clinical to early 

clinical trials (Phase 

I/II), mainly for cancer 

diagnosis and 

treatment 

(photothermal therapy, 

radiation 

enhancement). 

5) 
Carbon-Based 

Nanostructures 

Structures like Carbon 

Nanotubes (CNTs) 

(cylindrical) or Graphene 

Oxide (GO) (2D sheets) 

composed entirely of carbon. 

Extremely high surface area for 

drug loading (especially via \pi-

\pi stacking); unique 

mechanical/thermal/electrical 

properties; efficient 

photothermal agents (light-to-

heat conversion). 
 

 

Predominantly in pre-

clinical research. 

Safety and long-term 

biodistribution remain 

a major focus before 

widespread clinical 

entry.  

6) 
Biomimetic 

Nanocarriers 

Carriers derived from or 

cloaked with biological 

materials (e.g., cell 

membranes like red blood 

cells, platelets, or cancer 

cells). 

Inherent targeting/stealth 

properties; long circulation time; 

reduced immune clearance; can 

carry biological recognition 

molecules from the source cell. 

An emerging field, 

primarily in pre-

clinical research with 

some platforms 

entering early clinical 

trials for cancer 

immunotherapy and 

drug delivery. 

MECHANISMS OF CELLULAR UPTAKE & RELEASE 

Many nanocarriers gain entry into cells through endocytosis mechanisms, including clathrin-mediated or caveolin-

mediated processes (28). The release of contents inside the cell is determined by the design of the carrier: 

pH-sensitive release in the acidic environments found in tumors (29). Carriers that respond to enzymes for specific 

diseased tissue settings (30).Activation through thermo-magnetic or photoresponsive methods (31) 

 

Figure 4: Endocytosis and intracellular release mechanisms of nanoparticles 
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CLINICAL APPLICATIONS 

Cancer 

Cancer remains the leading application area for nanomedicine. Clinically approved systems include liposomal 

doxorubicin and albumin-bound paclitaxel (32). Recent advances integrate diagnosis with therapy (theranostics) (33). 

Infectious Diseases 

LNP-based COVID-19 vaccines accelerated global investment. Nanocarriers are now being explored for tuberculosis, 

HIV, malaria, and influenza (34). 

Neurological Disorders 

Nanocarriers capable of crossing the blood-brain barrier using transferrin or peptide-targeted systems show promise in 

Alzheimer’s and Parkinson’s treatment (35,36). 

Gene and RNA Medicine 

LNPs and polymeric systems are advancing CRISPR, siRNA, and mRNA delivery platforms (37). 

2. CHALLENGES AND LIMITATIONS 

Regulatory complexity (38) 

Limited large-scale reproducibility (39) 

Potential long-term toxicity (40) 

Variability in immune clearance (41) 

3. FUTURE DIRECTIONS 

AI-designed nanoparticles 

Personalized and organ-specific nanocarriers 

Fully biodegradable vectors 

Real-time responsive theranostic systems (42–45) 

4. CONCLUSION 

The last decade has demonstrated remarkable progress in nanotechnology-enabled targeted drug delivery. The clinical 

translation of nanocarriers has proven their potential in cancer, infectious diseases, neurological disorders, and gene 

therapy. Continued research, regulatory framework development, and scalable manufacturing will advance 

nanomedicine toward precision healthcare. 
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