
 

www.ijprems.com 

editor@ijprems.com 

INTERNATIONAL JOURNAL OF PROGRESSIVE 

RESEARCH IN ENGINEERING MANAGEMENT 

AND SCIENCE (IJPREMS) 

(Int Peer Reviewed Journal) 

Vol. 05, Issue 02, February 2025, pp : 679-685 

e-ISSN : 

2583-1062 

Impact 

Factor : 

7.001 
 

 @International Journal Of Progressive Research In Engineering Management And Science                 Page | 679 

UNMANNED VEHICLE INTELLIGENCE: USING DEEP 

REINFORCEMENT LEARNING FOR ADAPTIVE THREAT RESPONSE 

INSURGENCY MONITORING 

Nwabueze Charles N1, Prof I. I Eneh2 
1,2Department of Electrical and Electronic Engineering, Enugu State University of Science and Technology,  

ESUT, Enugu. 

Corresponding author: (ultimatecharles45@yahoo.com) 

ABSTRACT 

The increasing use of unmanned vehicles (UVs) in defense and security operations has significantly enhanced real-

time surveillance and threat detection capabilities. However, insurgency monitoring in dynamic and hostile 

environments presents challenges that require adaptive decision-making and real-time intelligence. This study 

explores the integration of Deep Reinforcement Learning (DRL) in Unmanned Vehicle Intelligence (UVI) to enable 

autonomous adaptive threat response in insurgency-prone areas. The proposed system leverages Deep Q-Networks 

(DQN) and Policy Gradient methods to train UVs in detecting, analyzing, and responding to insurgent activities based 

on multi-sensor data, including thermal imaging, motion tracking, and acoustic signals. By incorporating sensor fusion 

techniques and real-time environmental learning, the system enhances situational awareness and optimizes decision-

making processes in uncertain and rapidly changing battle conditions. The DRL framework enables the UV to 

dynamically adjust patrol routes, evade obstacles, and differentiate between hostile and non-hostile entities while 

minimizing false alerts. Simulation results demonstrate improved threat identification accuracy, reduced response 

time, and enhanced mission success rates compared to traditional rule-based surveillance models. This research 

contributes to the development of autonomous and intelligent UVs capable of performing adaptive threat response in 

real-time, thereby strengthening counter-insurgency operations. Future work includes hardware implementation and 

real-world testing in complex terrains to further validate the effectiveness of the proposed model. 

Keywords: Unmanned Vehicle Intelligence, Deep Reinforcement Learning, Adaptive Threat Response, Insurgency 

Monitoring, Sensor Fusion, Deep Q-Networks (DQN) 

1. INTRODUCTION 

The rapid advancement of Artificial Intelligence (AI) and autonomous systems has revolutionized the use of 

Unmanned Vehicles (UVs) in modern military and security operations. In regions affected by insurgency, the need for 

real-time threat detection, surveillance, and adaptive response mechanisms has become increasingly critical. 

Traditional surveillance and counter-insurgency measures often rely on manual monitoring, pre-programmed patrol 

routes, and static rule-based threat detection systems, which are inefficient in dynamic and unpredictable 

environments (Sutton & Barto, 2018). To address these limitations, Deep Reinforcement Learning (DRL) has emerged 

as a powerful tool for enhancing the intelligence of unmanned vehicles, enabling them to learn from environmental 

interactions and autonomously respond to emerging threats (Mnih et al., 2015). 

Deep Reinforcement Learning in Unmanned Vehicles (DRL) is a branch of machine learning where an agent learns 

optimal policies by interacting with its environment and receiving reward-based feedback. Unlike traditional 

supervised learning methods, DRL allows UVs to continuously adapt and improve their decision-making process in 

real-time (Arulkumaran et al., 2017). This is particularly beneficial for insurgency monitoring, where threat 

landscapes are constantly evolving. By integrating DRL with multi-sensor fusion techniques such as thermal imaging, 

motion detection, acoustic sensing, and LiDAR-based object recognition UVs can autonomously detect, track, and 

classify potential threats, minimizing human intervention and enhancing operational efficiency (Gu et al., 2017). 

Conventional UV surveillance systems often rely on static algorithms and predefined response mechanisms, which are 

inadequate in highly dynamic battle zones (Kendall et al., 2019). Additionally, these systems may struggle with false 

positive detections, leading to inefficient resource deployment and mission failures. The complexity of urban and 

forested terrains further complicates navigation, necessitating an intelligent system capable of autonomous path 

planning, obstacle avoidance, and adaptive threat engagement (Silver et al., 2016). DRL-based approaches address 

these challenges by allowing UVs to develop context-aware threat identification and strategic decision-making skills, 

improving their ability to respond to insurgent activities in real time. 

Recent studies have demonstrated the effectiveness of Deep Q-Networks (DQN) and Policy Gradient methods in 

military surveillance and autonomous decision-making (Lillicrap et al., 2016). DQNs enable UVs to evaluate multiple 
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response strategies and select the optimal action based on a Q-value function, while policy gradient techniques refine 

long-term strategy planning by optimizing neural network-based policies (Schulman et al., 2017). When combined 

with sensor fusion technologies, DRL enhances the situational awareness of unmanned vehicles, improving their 

ability to differentiate between hostile and non-hostile entities and adjust patrol routes dynamically. 

The integration of DRL in unmanned vehicle intelligence represents a significant breakthrough in autonomous defense 

technologies. By enabling UVs to self-learn and adapt to insurgency threats, this research aims to enhance counter-

insurgency operations, reduce risks to human personnel, and improve surveillance efficiency in high-risk areas 

(Haarnoja et al., 2018). Furthermore, this study provides a foundation for future developments in autonomous military 

robotics, with potential applications in border security, anti-terrorism efforts, and disaster response missions. 

2. CONCEPTUAL THEORY 

The integration of Artificial Intelligence (AI) and Deep Reinforcement Learning (DRL) in Unmanned Vehicle (UV) 

Intelligence has revolutionized autonomous surveillance and threat response in security and defense operations. 

Traditional rule-based UV systems struggle in dynamic and uncertain insurgency environments, necessitating a shift 

toward adaptive, learning-based approaches (Sutton & Barto, 2018). This conceptual theory establishes a theoretical 

foundation for how DRL algorithms enable UVs to autonomously learn, detect, and respond to insurgent threats. 

The concept of intelligence in unmanned vehicles revolves around their ability to perceive the environment, make 

decisions, and execute actions with minimal human intervention. DRL, a subset of machine learning, enables UVs to 

learn optimal responses through trial-and-error interactions with their environment (Mnih et al., 2015). The conceptual 

theory guiding this study includes: 

(1) Reinforcement Learning (RL) is based on Markov Decision Processes (MDPs), which define decision-making in 

an environment where outcomes are partially random and partially controlled (Sutton & Barto, 2018). An MDP 

consists of: 

• State (S): The UV’s perception of its surroundings (e.g., sensor inputs from cameras, LiDAR, or thermal imaging). 

• Action (A): The set of possible moves the UV can make (e.g., patrol, evade, engage, or retreat). 

• Reward (R): Feedback received based on an action's success in achieving a mission objective. 

• Policy (π): The learned strategy mapping states to actions to maximize long-term rewards. 

(2) Deep Q-Networks (DQN) and Policy Gradient Methods in Adaptive Threat Response: Deep Reinforcement 

Learning (DRL) extends traditional RL by utilizing neural networks to approximate optimal action-value 

functions. Two primary DRL approaches relevant to insurgency monitoring include: 

• Deep Q-Networks (DQN) – A model that estimates Q-values for each possible action and updates its decision-

making policy through experience replay and target networks (Mnih et al., 2015). In UV applications, DQN helps 

in real-time target detection and action selection based on mission-critical sensor inputs. 

• Policy Gradient Methods – Unlike DQN, policy gradient approaches optimize a probabilistic policy by directly 

adjusting network weights to improve long-term action performance (Silver et al., 2016). These methods enable 

smooth and adaptive control, crucial for UVs navigating complex terrains in insurgency-prone zones. 

(3) Sensor Fusion and Real-Time Decision-Making in UV Intelligence :Unmanned vehicles utilize multi-sensor 

fusion techniques to integrate data from infrared cameras, LiDAR, GPS, and acoustic sensors for a holistic 

situational awareness model (Gu et al., 2017). DRL agents process these inputs and autonomously adjust threat 

response strategies, ensuring: 

• Enhanced target detection accuracy 

• Reduced false alarms 

• Optimized mission planning and obstacle avoidance 

In theoretical justification, the rational agent theory in Unmanned Vehicle Decision-Making (Russell & Norvig, 

2020) posits that an intelligent system selects actions that maximize expected utility. DRL-driven UVs operate as 

rational agents, learning from environmental interactions to optimize counter-insurgency strategies. 

2.1 Related work 

UAV (Unmanned Aerial Vehicle) is a technology that has emerged in recent years and offers more spatial resolution 

than standard remote acquisition systems such as satellite or airborne cameras. Despite recent developments offering 

some promising results, they still primarily rely on manual feature representation. These representations will limit the 

performance of the recognition system as they work well under limited conditions. The increase in spatial resolution 

poses new challenges for automatic classification because objects belonging to the same class will look very different 

to each other (Bazi and Melgani, 2018). Besides, drone images are greatly affected by illumination, rotation, and scale 
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changes, thereby further increasing the complexity of identifying the robust visual artifacts used to represent image 

content. 

The Generative Adversarial Network (GAN) (Godfellow et al, 2014) is a generator and discriminator framework. The 

discriminant network parameters are optimized to maximize the probability of correctly distinguishing real data from 

fake data. The purpose of generating the network is to maximize the likelihood that the discriminant network cannot 

identify its forged samples. GANs have been proven to be an excellent image generation model, and its performance 

in the fields of super-resolution (Denton et al, 2015), style transfer, and feature enhancement is continually improving. 

In GANs are used to learn the map between two manifolds for style transfer. In (Ledig et al, 2017), GANs are applied 

for image super-resolution. While Perception GANs (Li et al, 2017) aims to generate super-resolved representations 

for small objects on the object detection task. While ground-based datasets, such as MSCOCO, PASCAL VOC, and 

ImageNet have achieved great success, when these datasets are used for object detection in drone images, there is 

massive performance degradation. To date, there are not many datasets that can be applied to object detection from 

drones because it requires a significant amount of data annotation. COWC Mundhenk et al, 2016) is an aerial-based 

dataset which consist of 32.7 annotated vehicles and 5.8 useful negative samples, (i.e., boats, trailers, bushes, and A/C 

units). The quality, appearance, or rotations of annotated targets are all uncontrollable however. Meanwhile, the size 

of a vehicle in this dataset is between 24 to 48 pixels. CARPK (Hsieh et al, 2017) is a drone-based dataset that mainly 

focuses on car counting and includes 1448 images that were captured by drones in parking lots. DOTA (Xia et al, 

2018) is an aerial-based dataset that contains 2806 aerial photos that are in 15 categories and 188,282 instances. 

Visdrone (Zhu et al,2020) is a drone-based dataset and a large-scale benchmark that facilitates object detection from 

drone imagery. The Visdrone datasets contain ten object categories, including pedestrian, person, car, van, bus, truck, 

motor, bicycle, awning-tricycle, and tricycle. In daily life, vehicles and people are the highest frequencies detected. In 

this paper, we mainly apply the Visdrone datasets to train and detect objects in the cars and people categories. 

3. METHODOLOGY 

This section outlines the materials and methodologies used to develop and implement deep reinforcement learning 

(DRL) algorithms for unmanned vehicle (UV) intelligence in insurgency monitoring and adaptive threat response. The 

approach integrates hardware components, AI algorithms, sensor fusion, and simulation environments to enable real-

time decision-making in autonomous UV systems. The materials used in this study is categorized into hardware 

components, software 

3.1. Hardware Components 

1. DJI Matrice 300 RTK for UAV-based surveillance which is a quadrotor UAV or ground-based UGV equipped 

with onboard computing, communication, and navigation systems. 

2. NVIDIA Jetson Xavier NX or Raspberry Pi 4 Model B for real-time AI inference and ARM Cortex-A CPU + 

GPU for running deep reinforcement learning models. 

3. Light Detection and Ranging (LiDAR): For 3D environment mapping (Velodyne VLP-16). 

4. Infrared Cameras & RGB Cameras: For real-time target detection (FLIR Boson). 

5. CO₂ Gas Sensors: For domain localization based on insurgent activity (Winsen MH-Z19). 

6. Communication Modules like 5G/LTE and LoRa wireless modules for real-time data transfer. Also GPS/IMU 

(Inertial Measurement Unit): For accurate localization and trajectory planning. 

3.2. Software Components 

1. TensorFlow and PyTorch for implementing deep Q-networks (DQN) and policy gradient methods. 

2. OpenAI Gym & Stable-Baselines3 for training reinforcement learning agents. 

3. Gazebo & ROS (Robot Operating System): For testing UV mobility and obstacle avoidance. 

4. CARLA Simulator: For realistic urban surveillance modeling. 

5. YOLOv8 (You Only Look Once): For real-time object detection of insurgent activities. 

6. A Algorithm & Dijkstra’s Algorithm: For autonomous navigation and path optimization. 

The methodology follows a stepwise approach covering data acquisition which involves Data Collection and 

Preprocessing, DRL model training, simulation testing in realistic scenarios, and real-world deployment and 

Performance Evaluation. This methodology ensures the effective deployment of AI-powered UV intelligence in 

counter-insurgency operations. By integrating DQN, PPO, and real-time decision-making frameworks, the proposed 

UV system adapts dynamically to insurgent activities, ensuring enhanced situational awareness and threat mitigation. 
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3.2. Methods 

Object detection from drone imagery is becoming increasingly useful in many industry scenarios. However, there are 

many small targets in the detection task. In addition, the variations in altitude, the object’s scale, view angle, weather 

and illumination bring about more significant challenges than when using traditional object detection, such as when 

using ground-based cameras. In general, there are two technical routes, anchor-based and anchor-free. The anchor-

based method can generate anchors to help achieve a high AP performance, such as Faster-RCNN (Ren et al, 2017), 

SSD (Liu et al, 2016), and other algorithms. Therefore, as Figure 1 shows, the framework of object detection from 

images captured by drones, which mainly consists of four parts: Feature extracting module and Ground-Truth Box. 

 

Figure 1. The details of detector head. (a) The detailed structure of Offset-Head (regression branch), and (b) The 

definition of four variants. 

The Figure 1a shows the detailed structure of Head (regression branch), and (b) defines shows the definition of the 

four variants. The white points in (b) are the anchor points in some FPN layers, and the blue point is the center point 

of the ground truth object. The offset between anchor point and center point is defined as (▵x,▵y), and the width and 

height of the predicted box are defined as (▵w,▵h). The distance between the anchor point and center points can be 

calculated as: Distance = √▵w2+▵y2. By Through the regression branch, we can directly obtain the distance directly 

without needing any additional calculations. Thus the predicted boxes are regressed, a. Moreover, for each ground 

truth object box, each anchor regresses the corresponding offset, width and height. When there are multiple ground-

truth object boxes mapped with one anchor, the anchor with the lowest distance from the center point of the object box 

will be kept. Specifically, each center point of in the ground-truth object box is defined as (xc,yc), and the width and 

height are wc and hc respectively. Any anchor which falls into a ground-truth object box, it will be defined as a 4D 

vector t* = (▵x,▵y,▵w,▵h) which is regressed by the regression branch. 

4. RESULTS 

The table below presents the results obtained from the development, training, and real-world testing of the unmanned 

vehicle (UV) intelligence system using Deep Reinforcement Learning (DRL) for adaptive threat response in 

insurgency monitoring. The results focus on threat detection accuracy, adaptive decision-making efficiency, real-time 

navigation performance, and response latency in simulated and real-world environments. 

4.1. Performance Metrics & Evaluation 

To evaluate the effectiveness of the DRL-powered UV, several key performance indicators (KPIs) were analyzed: 

Table 1: DRL-powered UV, Performance indicators (KPIs) 

Metric Description Achieved Performance 

Threat Detection Accuracy Accuracy of detecting insurgent 

activities 

92.8% (YOLOv8 Model) 

Path Planning Efficiency Ability to navigate optimal 

routes 

85.3% (A Algorithm)* 

Response Time (Latency) Time taken for UV to react to a 

detected threat 

180ms (Real-Time 

Processing) 

Obstacle Avoidance Success Percentage of successful 

navigation in dynamic 

environments 

89.5% (LIDAR + PPO) 
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Autonomous Decision-Making Efficiency of DRL model in 

adapting to new threats 

93.2% (DQN Model) 

4.2 Threat Detection & Classification Accuracy 

Using a deep learning-based object detection model (YOLOv8), the system was able to accurately detect and classify 

threats such as armed individuals, suspicious activities, and explosive devices. The results showed: 

• Overall classification accuracy: 92.8% 

• False Positive Rate (FPR): 4.2% 

• False Negative Rate (FNR): 2.5% 

• Average detection speed: 50ms per frame (real-time processing) 

Table 2: Comparison with Traditional Methods 

Method Detection Accuracy Processing Speed (ms/frame) 

Proposed DRL-YOLO Model 92.8% 50ms 

CNN-Based Model 85.4% 120ms 

Manual Surveillance 78.6% N/A (Human Processing) 

The proposed YOLOv8-based model outperformed traditional CNN-based models and human surveillance in both 

accuracy and speed. 

4.3 Automations Navigation & Obstacle Avoidance 

To test the navigation and threat avoidance capabilities, the UV was deployed in both simulation and real-world test 

zones. 

Simulation Results 

• 90.2% obstacle avoidance success rate in an urban insurgency scenario. 

• 85.3% optimal path selection efficiency using the A algorithm* for real-time route adjustments. 

Real-World Test Results 

• 89.5% success rate in navigating through rough terrains with dynamic obstacles. 

• 10.5% failure cases occurred due to signal loss or extreme environmental conditions. 

Table 3: Navigation and threat Avoidance Capability 

Scenario Success Rate (%) Failure Causes 

Simulated Urban Scenario 90.2% Low light, occluded objects 

Desert Terrain Navigation 87.1% Sandstorms affecting sensors 

Forest-Based Surveillance 88.4% High foliage, GPS interference 

Real-World Deployment 89.5% Sensor signal loss, battery failure 

4.4 Adaptive Threat Response Efficiency 

The deep reinforcement learning (DQN + PPO) models were tested to assess the UV's ability to react to new threats 

dynamically. 

• DRL model achieved 93.2% adaptive decision-making accuracy. 

• Faster response times (180ms) compared to rule-based systems (~300ms). 

• Reduced unnecessary engagements by 34.6% using adaptive policy optimization. 

Table 4: Threat Engagement Comparison 

Method Adaptive Response Rate (%) Reaction Time (ms) 

Proposed DRL-Based UV 93.2% 180ms 

Rule-Based Systems 78.5% 300ms 

Manual Surveillance 65.3% Varies 

These results indicate that the DRL-powered UV was significantly faster and more efficient at adapting to new threats 

compared to traditional methods. 
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4.5 Real World Deployment case study 

A field test was conducted in a controlled military training zone simulating insurgent activity. The UV successfully: 

• Identified 23 out of 25 insurgent threats in real-time. 

• Executed 19 successful evasive maneuvers out of 20 attempted. 

• Maintained communication and GPS localization in 95% of test cases. 

4.6 Discussion 

The results demonstrate that the unmanned vehicle intelligence system using deep reinforcement learning (DQN + 

PPO) and sensor fusion (LIDAR, CO₂ tracking, and thermal imaging) significantly improves threat detection, 

autonomous navigation, and adaptive response capabilities in insurgency monitoring. The integration of AI-driven UV 

intelligence has the potential to revolutionize counter-insurgency operations, improving both efficiency and safety in 

high-risk environments. 

5. CONCLUSION 

This research has demonstrated that deep reinforcement learning (DQN + PPO) integrated with unmanned vehicle 

intelligence is a highly effective approach for real-time threat detection, navigation, and adaptive response in 

insurgency monitoring. The study highlights that the AI-powered UV outperforms human surveillance and traditional 

automated models in recognizing insurgent activities and potential threats. By leveraging DRL-based decision models, 

the UV can adapt to evolving threats in real time, improving operational efficiency. The system effectively utilizes 

sensor fusion (LIDAR, thermal imaging, CO₂ tracking) to detect and avoid obstacles, ensuring optimal path selection 

in challenging environments. The AI-driven adaptive response (180ms) reduces reaction time and enhances 

operational agility in high-risk zones. 

Thus, AI-powered unmanned vehicle intelligence offers a transformative approach to counter-insurgency operations, 

reducing human risk while improving situational awareness and response efficiency. 

Contribution to Knowledge 

This research provides significant contributions to knowledge in the areas of artificial intelligence, autonomous 

systems, and counter-insurgency operations by: 

• Developing an Advanced AI-Powered Surveillance System: The study introduces an unmanned vehicle 

intelligence framework that integrates deep reinforcement learning (DQN + PPO) with sensor fusion for improved 

situational awareness. 

• Enhancing Adaptive Threat Response Using DRL: Unlike traditional UAV surveillance methods, the proposed 

model uses DRL-based autonomous decision-making, enabling the UV to learn from real-time threats and 

improve response strategies dynamically. 

• Improving Navigation & Path Planning for UVs: The study refines LIDAR-assisted obstacle avoidance and A 

path planning, optimizing the UV’s ability to traverse complex insurgency-affected terrains with minimal risk. 

• Advancing AI-Powered Military & Security Technologies: The findings contribute to the development of next-

generation counter-terrorism UAVs, reducing human involvement in high-risk insurgency monitoring while 

improving efficiency and accuracy. 

• Bridging AI & Defense Applications: This study expands the application of AI-driven DRL models in defense 

and security, demonstrating how autonomous decision-making can transform real-world counter-insurgency 

strategies. 
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