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ABSTRACT

In this review paper, we have conducted a thorough investigation of prior and contemporary research on the detection
of plant leaf diseases. The conventional manual visual inspection for assessing the quality of plants has proven to be
inherently unpredictable and inconsistent. Moreover, it necessitates a substantial level of expertise in the realm of
plant disease diagnostics, particularly in phytopathology, leading and genetic to disproportionately lengthy processing
times. Consequently, there has been a paradigm shift towards utilizing image processing techniques for the
identification of plant diseases. This paper is structured into three principal sections. The first section furnishes a
comprehensive review of the various algorithms used, wherein we compare significant algorithms and studies that
have employed image processing and artificial intelligence techniques. The second section delves into the frameworks
and juxtaposes these against earlier research endeavors. Subsequently, we engage in an in-depth discourse concerning
the precision of the outcomes achieved. Drawing insights from our review, we offer a detailed exposition of the
performance in detecting and classifying illnesses. Lastly, we consolidate the findings and address the challenges
encountered in plant leaf disease detection through image processing.

Keywords: Plant Leaf Disease Detection, Image Processing Algorithms, Disease Classification, Precision
Assessment, Automated Detection Methods, Feature Extraction, Segmentation Classification.

1. INTRODUCTION

Agriculture in this world has emerged as a significant contributor to a country's overall economic growth, making it
the cornerstone of the nation's economic stability. With a substantial share in a country’s Gross Domestic Product
(GDP), agriculture remains the primary industry. The resilience and productivity of this sector are vital for the nation's
prosperity. However, the vulnerability of crops to diseases poses a significant threat, as crop damage can lead to a
considerable reduction in overall agricultural output, ultimately impacting the economy. Leaves, being the most
sensitive part of plants, often exhibit the earliest signs of diseases [1]. Hence, from the very inception of a crop's life
cycle to its maturation for harvest, vigilant monitoring and swift disease management are paramount. Traditional
methods, relying on naked-eye observation by skilled professionals, have been the historical approach to disease
monitoring. Nevertheless, this labor-intensive and time-consuming process is gradually being overshadowed by the
advent of automated and semi-automated plant leaf disease detection methods. Recent years have witnessed a surge in
innovative methodologies aimed at creating autonomous and semi-autonomous systems for the detection of plant leaf
diseases. Comparative analyses have demonstrated that these technological advancements outperform the traditional
manual observation methods in terms of speed, cost-efficiency, and accuracy. These techniques enable the delineation
of disease boundaries, identification of affected leaves and stems, determination of the size and contours of the
affected region, and the assessment of the color of the infected area. This paper aims to explore a diverse range of
approaches for diagnosing plant diseases, with a focus on the intersection of image processing and disease detection.
The subsequent sections of this paper are organized as follows: The first section provides a concise overview of the
significance of diagnosing plant diseases within the context of agriculture and economic stability. The subsequent
sections delve into background research, recent advancements in the field, algorithmic methodologies, and the
corresponding outcomes.

2. LITERATURE REVIEW

Exploring and detecting plant diseases remains a central focus within the domain of machine vision research. This
specialized field involves the utilization of machine vision equipment to capture plant images, primarily to ascertain
the presence of any diseases [2]. Notably, agriculture has been at the forefront of adopting computer vision technology
for the identification of crop diseases, gradually replacing the conventional method of diagnosing plant ailments
through visual inspections. Over recent decades, the significance of plants has grown on a global scale. Scientists and
technologists have long been intrigued by the potential role of plants in addressing pressing issues, including global
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health, energy production, and beyond. dwindling global plant cover has raised concerns about heightened risks
related to global warming associated with the challenges. In response to these concerns, various research initiatives
have been launched, equipping scientists with the knowledge required to develop cutting-edge convolutional layer
systems, enabling advanced image detection and plant disease classification, incorporating techniques such as LSTM,
autoencoders, and GANs. Image detection proves invaluable, particularly in distinguishing between healthy and
diseased leaves. This is where convolutional neural networks (CNNs) come into play, augmented by LSTM,
autoencoder, and GAN architectures, allowing them to scrutinize plant images and identify potential irregularities
within the plant's natural environment. Notably, researchers in this field often draw upon scanned images of both
healthy and diseased plants as a benchmark for comparison. Conventional machine learning approaches for plant leaf
disease identification predominantly rely on conventional image processing algorithms or handcrafted features and
classifiers [3]. When developing an imaging scheme, this technology incorporates a multitude of characteristics
related to plant diseases. Furthermore, it meticulously selects optimal light sources and shooting angles to ensure
uniform illumination in captured images. These meticulously designed imaging systems can significantly streamline
traditional algorithms, albeit often at a higher cost. Nevertheless, there are instances where traditional algorithms may
struggle to fully mitigate the effects of environmental variations when operating in natural settings [4]. This is
primarily due to the dynamic nature of natural environments, for which these algorithms were not originally designed.
The identification and diagnosis of plant leaf diseases in complex, natural ecosystems pose multifaceted challenges,
including subtle variations in lesion size and type, limited contrast, significant variations in lesion appearance, and
substantial image noise. Additionally, the process of capturing images of crop diseases and pests in natural light
environments is susceptible to numerous distractions. It is in such scenarios that the incorporation of advanced
techniques like GANs proves advantageous, aiming to improve disease detection outcomes. One category of deep
learning models, specifically convolutional neural networks (CNNSs), has recently demonstrated substantial success
across various computer vision applications, spanning from recognizing facial expressions [5], detecting text scenarios
[6], monitoring traffic [7], to identifying medical images [8], among others. Companies, both domestic and
international, have leveraged deep learning applications for crop disease detection, yielding practical solutions such as
WeChat applets and photo recognition apps. In essence, deep learning-based algorithms for plant disease detection
exhibit significance in both academic and practical contexts.

3. METHODOLOGY

This research aims to provide a comprehensive and cutting-edge overview of the state-of-the-art in plant leaf disease
detection using image processing. To achieve this objective, we employ a systematic literature review approach. The
systematic review involves the methodical identification, analysis, and synthesis of the latest research findings in this
rapidly evolving field. This approach ensures that our review is rigorous, transparent, and free from bias, enabling us
to offer valuable insights into the current landscape of plant disease detection technology.

4. MODELING AND ANALYSIS

The proposed model is SLR-PLDD (Systematic Literature Review on Plant Leaf Disease Detection). SLR-PLDD is a
meticulously structured model designed to conduct a comprehensive and methodical analysis of the latest research in
the field of plant leaf disease detection using image processing. This model ensures that the review process is
systematic, rigorous, and unbiased, providing valuable insights into the cutting-edge developments in this domain
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4.1 Algorithm-Centric Review

For ANN, in this research [20], a novel K-means clustering technique was developed to address the issue of noisy
photographs of paddy leaves, often distorted by camera lighting. This method effectively removes image noise and
proceeds to identify the specific paddy plant disease. The classification technique employed combines Atrtificial
Neural Networks (ANN) and FUZZY logic. The study referenced in [13] utilizes a strategy involving feature
extraction and image segmentation. Shape and color properties are recovered using SIFT, followed by an evaluation of
results using an ANN classifier. This approach offers an effective means of assessing the overall health of cotton
plants. Another approach for evaluating the well-being of cotton plants is presented in [21], involving the acquisition
and analysis of leaf images. This method combines multiple image processing techniques with an Artificial Neural
Network (ANN) to enable rapid and precise diagnosis of cotton leaf diseases. The authors of [18] introduced a
composite feature vector, trained through Machine Learning (ML) methods, specifically an Artificial Neural Network
(ANN). Their decision support model integrates machine learning techniques to facilitate the categorization and
identification of leafy plants.

In the domain of Soft Computing, a technique incorporating K-means clustering is employed to pinpoint affected leaf
tissue [22]. This study harnesses the power of K-Nearest Neighbors (KNN) for the identification of diseased leaves,
their classification based on the type of disease, and the presentation of corresponding results. A versatile algorithm is
presented in [23], designed to address ailments across the board. This supervised learning algorithm, while agnostic to
the specific ailment, serves as a demonstration by accurately detecting gray fungus on cotton plants and evaluating the
disease's severity to determine the stage. In the study detailed in [13], a methodology for disease assessment leverages
features extraction and image segmentation. The process involves the use of Scale-Invariant Feature Transform (SIFT)
to recover shape and color attributes, with subsequent evaluation using a K-Nearest Neighbors (KNN) classifier. The
proposal in [14] suggests the development of an image processing system capable of recognizing and categorizing
four distinct plant disease forms. The experiment, conducted on a dataset of over 500 images, deploys the K-Nearest
Neighbors (KNN) classifier for effective analysis. Introducing a novel Deep Learning approach integrated with an
Internet of Things (loT) strategy for optimal prediction outcomes [24]. The LDEDLP method, powered by cutting-
edge innovations like 10T, excels in the efficient detection of plant diseases and timely dissemination of relevant alerts
to the appropriate stakeholders.For CNN, the method proposed in [25] categorizes plant leaf disorders into 15 distinct
classes, employing a Convolutional Neural Network (CNN). Within these categories, 12 groups represent different
plant diseases, such as bacteria and fungi, while the remaining three groups pertain to healthy leaves. Research
detailed in [26] demonstrates the application of deep neural networks for the classification of leaf images, forming the
foundation of a plant disease identification model. This model efficiently discerns plant leaves from their surroundings
and accurately detects 13 different plant diseases amid healthy foliage. The model leverages deep CNN to distinguish
between healthy and diseased leaves and maintain consistency with the backdrop images. In a separate investigation
[27], authors employ a multi-stage classification process, aiming to enhance prediction accuracy and systematically
exclude potential outcomes. This approach is also employed for plant leaf disease identification using Convolutional
Neural Networks (CNN). The process involves preprocessing the images, segmenting them using IFFCMC and AO
thresholding, extracting GLCM features from the segmented images, and reducing feature dimensions using the PCA
technique. Ultimately, a DCNN-based classification is executed. In a study introduced in [9], the practice of gathering
leaf photo characteristics through K-means clustering is presented. The algorithms are rigorously tested using data
from the training set. Results reveal the exceptional performance of SVM in identifying and categorizing fungal
infections on cereal crops. The research paper [10] primarily centers on the segmentation of leaf and fruit images.
After retrieving pertinent features, SVM comes into play during both training and classification phases. A computer
program proposed in [11] implements five crucial steps, efficiently harnessing SVM and the minimum distance
criteria for accurate diagnosis and categorization of examined disorders. This tool proves valuable for farmers who can
access a web-based application [12] designed for fruit disease diagnosis. The process includes image downsizing,
feature extraction based on criteria like color, morphology, and contrast, and the utilization of SVM for classification.
The study described in [13] adopts a methodology involving feature extraction and image segmentation, with the
recovery of shape and color properties using SIFT. SVM evaluation follows the feature extraction process. In another
research endeavor [14], the suggestion is to develop an image processing system capable of recognizing and
categorizing four distinct plant disease forms. This extensive experiment was conducted with a dataset comprising
over 500 images, employing the SVM classifier. In [15], the author presents a strategy for detecting and identifying
illnesses affecting tomato plants, utilizing the Gabor wavelet transform system to extract relevant image
characteristics. The SVM Machines with various kernel functions are employed for classification. Utilizing K-means
clustering in the Ycbcr and Lab color spaces for illness component extraction, the study [16] explores SF-CES for the
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color images. Further categorization involves the retrieval of GLCM texture features and color texture characteristics,
culminating in classification based on SVM. A comprehensive examination of plant disease identification through
various approaches is undertaken in [17]. The authors in [18] introduce a composite feature vector designed for
training by a Support Vector Machine (SVM). Their decision support model incorporates a range of machine learning
techniques for leaf plant categorization and identification. In a different approach [19], the concept of the gray level
cooccurrence matrix is utilized for image segmentation and feature extraction. Classification is subsequently carried
out using a multi-class support vector machine. GLCM (Gray-Level Co-occurrence Matrix) was applied to extract
features in [29], followed by the utilization of a classification technique for the training and testing of plant leaves.
This approach exemplified a systematic methodology, employing a random forest as the classifier. In [30], authors
explored seven different classifier methods to distinguish and categorize diseased and healthy potato leaves, analyzing
over four hundred and fifty photos sourced from publicly available plant village datasets. The accuracy of random
forest classifiers outperformed other classification methods. In the domain of deep learning, the Long Short-Term
Memory (LSTM) model emerges as a pivotal asset for sequence analysis and prediction tasks. The LSTM architecture
is tailored to unravel intricate dependencies and patterns within sequential data, rendering it invaluable for a spectrum
of applications, from time series forecasting to natural language processing. LSTM networks excel in circumventing
challenges posed by lengthy temporal relationships and mitigating the notorious vanishing gradient issue, often
encountered in traditional recurrent neural networks. In parallel, the realm of unsupervised learning unveils the
versatile realm of autoencoders. Autoencoders, comprising an encoder and decoder, embark on a transformative
journey encompassing dimensionality reduction, noise removal, and feature acquisition. The encoder seamlessly maps
input data into a compact, lower-dimensional latent space, while the decoder orchestrates the intricate task of
reconstructing the original input from this newfound representation. Autoencoders are the unsung heroes of data
simplification, entrusted with roles such as image compression, anomaly identification, and data generation.

4.2 Framework-Centric Review

This study, as detailed in [22], follows a comprehensive, two-phase approach. The initial phase involves image
acquisition, followed by image pre-processing in the second phase. Feature extraction is the third stage, which is
applied to both the training and testing sets. Subsequently, training is conducted in the fourth stage, with the results
extended to the testing set for classification. The concluding step entails recognition. These phases encompass the
training and testing segments of the system. The framework is structured around key steps: image acquisition, image
pre-processing, image segmentation, feature extraction, and subsequent comparison with a permanent database,
leading to disease detection and result display. The author of [29] presents a method that employs image processing
for plant disease identification. The proposed framework includes sequential steps, commencing with image
acquisition, followed by image pre-processing, image segmentation, feature extraction, and concluding with
classification. In another study, as exemplified in [9], the authors adhere to a standard sequence of image processing
steps, which includes image capture, picture pre-processing, image segmentation, feature extraction, and
classification. A parallel approach is observed in [33], where the method encompasses image acquisition, followed by
image selection for segmentation. This segmentation involves two distinct techniques: leaf region segmentation and
disease region segmentation, culminating in disease severity assessment. The approach detailed in [10] also adopts a
multi-stage strategy, involving training and testing phases. It initiates with image acquisition, followed by image pre-
processing and feature extraction. These steps are replicated for both training and testing sets. The training phase is
subsequently followed by classification, concluding with recognition. In the study described in [20], various
techniques are employed to diagnose paddy diseases. The framework's steps include image acquisition, image
preprocessing, image segmentation, feature extraction, and image classification. The authors in [25] introduce a
computer vision system for plant leaf disease identification. This system encompasses several phases: image
acquisition, image preprocessing, CNN structure design, training, testing, and, ultimately, plant leaf disease detection.
In the research discussed in [11], the authors propose a method for the identification and classification of leaf diseases.
The suggested framework encompasses several stages, including RGB picture capture, color transformation, pixel
masking and removal, RGB mapping, segmentation, extraction of useful segments, computation of texture, and
classification. This comprehensive system incorporates image acquisition, pre-processing, image enhancement, color
space conversion, segmentation, feature extraction, classification, and disease diagnosis [34]. In [31], the proposed
system follows a series of steps, beginning with image acquisition, pre-processing, segmentation, feature extraction,
matching content, and concluding with the display of the disease and its corresponding solution. Similarly, in [23], the
framework includes sequential steps of image acquisition, pre-processing, segmentation, feature extraction, and
classification. Another study, as seen in [26], involved deep CNN training using Caffe, an open-source deep learning
framework. The system's phases include data acquisition, image pre-processing and analysis, image segmentation, and
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pattern classification [35]. The two phases, the training phase and the testing phase, constitute the framework in [12].
The training phase includes steps such as input image, image pre-processing, feature extraction, clustering, and
classification. The testing phase encompasses input image from the user, pre-processing, feature extraction, and
classification. In the study detailed in [13], the authors employ common image processing steps, including image
acquisition, pre-processing, segmentation, feature extraction, and classification. The proposed methodology in this
work [14] leverages image processing techniques, involving stages such as image acquisition, pre-processing,
segmentation, feature extraction, and classification. In [21], the authors propose a technique for identifying cotton leaf
diseases using artificial neural networks. The framework encompasses key steps, including input image, image pre-
processing, feature extraction, and classification. The authors in [36] recommend the use of neural networks for
diagnosing and classifying grape leaf diseases. Their proposed framework involves stages like image acquisition,
background removal, pre-processing, segmentation, lesion extraction, feature extraction, and classification. In the
SVM-based tomato disease detection approach presented in [15], the framework includes four fundamental phases:
image acquisition, pre-processing, feature extraction, and classification. In [16], the authors suggest a system using
image processing methods to identify unhealthy areas on citrus leaves. The proposed framework includes image
analysis and classification stages, encompassing image pre-processing, segmentation, feature extraction, and
classification. The study discussed in [17] proposes an image processing technique for plant leaf disease identification.
The framework is designed with a multi-layered approach, covering stages like image acquisition, pre-processing,
segmentation, feature extraction, and classification. In [37], the authors propose a system for detecting plant infections
using image processing. The framework involves several steps, including image acquisition, pre-processing,
segmentation, feature extraction, and classification. The authors in [27] introduce a deep neural network-based
approach for plant disease detection and classification, featuring a multi-stage classification system. In [18], the
authors present a machine learning model, incorporating edge feature extraction, color feature extraction, and texture
analysis. The combined feature vector is trained, and the results are classified, including the identification of rice
plants and their diseases. The work in [28] suggests automatic feature extraction and plant leaf disease detection using
GLCM features and convolutional neural networks. The proposed framework comprises operations like image pre-
processing, segmentation, feature extraction, and classification. In [19], the authors recommend using machine
learning methodologies to identify and classify diseases in potato plant leaves, employing image segmentation, feature
extraction, and classification. In [24], the authors suggest combining deep learning networks with Internet of Things
(1oT) techniques for efficient plant leaf disease detection. Their approach involves operations such as image pre-
processing, feature extraction, image segmentation, classification, and 10T assistance. In [30], the authors focus on the
detection of potato disease using image segmentation and machine learning. Their framework incorporates image
processing, image normalization, color space conversion, image segmentation, feature extraction, training, and
classification. Figure 1 illustrates the proposed approach.

5. RESULTS AND DISCUSSION

In the study detailed in [22], the outcomes indicate that the system effectively recognized Alfalfa diseases with an
accuracy of up to 90%. This achievement was made possible through the application of K-Means Clustering, KNN
algorithm, and Local Binary Pattern (LBP). Another approach, as illustrated in [32], categorizes the infection intensity
into various percentages, such as 20%, 40%, and 75%. The solution is based on the utilization of the Canny edge
detection technique and Gaussian mixture model (GMM). In the research presented in [29], the authors identified
plant diseases using image processing techniques, including K-means clustering, Random Forest algorithm, and
GLCM. While the accuracy is not mentioned, it's noted that the solution is quite fast. A study found in [9] proposed a
system for plant disease identification using image processing techniques. To assess overall precision, accuracy,
recall, and F-measure, various techniques were employed. Notably, three of the algorithms achieved an accuracy rate
exceeding 90%, with SVM (Polynomial Kernel) providing the highest accuracy at 95.87%. The results from the
experiment in [33] achieved an accuracy of 98.60%. This accuracy assessment involved using the simple threshold
and triangle thresholding method. The author suggested the utilization of MATLAB for plant disease detection during
image processing in [10]. The system is expected to deliver high accuracy, although the specific percentage is not
mentioned. This accuracy was achieved using K-means clustering and support vector machine (SVM). In [20], the
authors employed image processing techniques, including K-means clustering, ANN, and fuzzy classification, to
identify and quantify paddy leaf disease symptoms. While the accuracy is not provided, the solution is described as
more accurate. In this paper from [25], a convolutional neural network (CNN) was used, resulting in an excellent
accuracy rate of 98%. The authors of the study in [11] proposed a system for detecting unhealthy regions of plant
leaves using texture features, achieving an accuracy of 94%. This was accomplished through the use of a support
vector machine and Minimum distance criterion. In another study, [34], the authors presented a system for evaluating
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the use of image processing in cotton leaf disease identification. The segmentation was performed using the K-means
clustering approach, and classification was carried out using neural networks, resulting in an accuracy of 89.56%. In
[31], the authors suggested a method for identifying and classifying plant leaf disease. The accuracy of this study
reached 90.98%. In another approach found in [23], two cascaded classifiers were utilized by the authors. Features
included local statistical features and hue and luminance from the HSV color space.

The KNN classifier was used, resulting in an accuracy of 82.50%. Additionally, in [26], a novel use of convolutional
neural networks (CNN) was introduced by the authors for plant disease recognition. The deep learning framework
Caffe was employed, achieving an accuracy of 96.3%. The authors in [35] suggested a method for segmenting images
to differentiate between two categories of orchid leaf diseases, achieving an accuracy of 86.36%. A web-based
application, proposed by the authors in [12], enables farmers to identify fruit diseases by uploading fruit photos. Using
K-means clustering for clustering and Support Vector Machine (SVM) for classification, the system achieved an
accuracy of 82%. In the context of paddy leaf disease detection, the authors employed the SVM classifier with
different kernels, such as Linear Kernel (95.63%), RBF Kernel (94.23%), and Polynomial Kernel (95.87%) [13]. In a
similar study, [14], digital image processing techniques were applied to examine and identify plant leaf diseases. K-
means clustering was used for segmentation, while GLCM and LBP were utilized for feature extraction.

Classification involved three types of classifiers: KNN, SVM, and Ensemble, with SVM under the cubic kernel
achieving the highest accuracy at 98.2%. In [21], the authors proposed a technique to detect and classify leaf diseases
using artificial neural networks, resulting in a moderate accuracy of 80%. In the study found in [36], the authors aimed
to identify leaf diseases using artificial neural networks and image processing. Surprisingly, the system achieved a
perfect accuracy of 100%. The research in [15] presented a support vector machine-based method for detecting
diseases in tomato leaves. The accuracy achieved with the Cauchy kernel was 100%. In contrast, [16] discussed image
processing methods for the early detection of plant diseases in citrus leaves, achieving accuracies of 96% using the
SVM RBF classifier and 95% using the SVM POLY classifier.

The approach in [17] suggested employing image processing to identify plant leaf disease, achieving an overall
recognition rate of 92.4%. In [37], the authors recommended an automatic detection system for infected plants,
achieving an accuracy of 98.27%. The study in [27] described a deep learning method for identifying and categorizing
plant diseases, attaining an accuracy of 96%. In [18], a decision support for locating illnesses in rice plants was
suggested. The machine learning model encompassed three feature extraction techniques, and the accuracy was 92.4%
for SVM and 99.5% for ANN. In [28], the authors proposed a framework with several parts, achieving a high accuracy
of approximately 97.43%. The authors suggested a methodology for identifying and classifying diseases affecting
potato plants in [19], achieving a 95.99% accuracy. To optimize prediction results with precision, a new deep learning
technique was introduced in [24], combining deep learning with the Internet of Things (IoT) techniques, resulting in
an accuracy level of approximately 99%.

Table 1. Overview of Plant Leaf Disease Detection Algorithms

Paper CNN | ANN SVM KNN RF | LSTM | Autoencoder | Accuracy
[18] v v SVM-92.4% ANN-99.5% v 98.30%
[28] v v v 97.43%
[24] v v v 99%
[30] v v v 97%
[11] v v v 94.74%
[31] v 90.98%
[23] v v v v 82.50%
[12] v 82%
[14] v v SVM98.2% KNN- 80.02% v 98.2%
[15] v v 99.10%
[16] v v v v 96%
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Table 2. Plant Leaf Disease Detection Techniques and Results Overview

Paper Culture Algorithm Dataset Accuracy

[18] Rice, Potato SVM, ANN, Autoencoder 120 SVM-92.4%, ANN-99.5%
[28] 14 different crops IFFCMC, CNN, KNN, LSTM | 54206 97.43%

[24] Different vegetable crops CNN, SVM, Autoencoder 54300 99%

[30] Potato Random Forest, CNN, ANN 450 97%

[11] 30 different crops SVM, CNN, LSTM 500 94.74%

[23] Cotton KNN 140 82.50%

[12] Pomegranate K-Mean, SVM, 610 82%

SVM-98.2%, KNN—
[14] | chilli, grape, rice, soya bean, KNN, SVM 560 80.02%
wheat, rose, cotton, apple, lichi
[15] Tomato SVM, K Means Clustering 200 99.10%
[16] Citrus SVM, K-means, LSTM 200 96%

5.1 Discussion- The timely and accurate detection and classification of plant diseases play a crucial role in supporting
crop growth. While diseases can be identified through manual observation and experienced monitoring, these methods
are time-consuming and costly. Image processing, on the other hand, offers an effective alternative, where algorithms
and digital cameras replace human observation and judgment. Recent advancements in computer vision-based
algorithms have shown promise in identifying and categorizing diseases in agricultural and horticultural crops.
However, there are some important issues that need to be addressed:

Lack of expertise in image processing techniques: The performance of computer vision systems heavily relies on
the choice of image processing techniques and classification strategies. Challenges like handling large datasets and
preventing overfitting often arise when evaluating segmentation and classification methods. Authors sometimes omit
crucial technical details.

Processing Speed: The speed of disease detection and classification is crucial due to the vast amount of data to be
analyzed. Feature extraction and selection methods are employed to reduce data dimensions and facilitate further
processing.

Restrictive setup requirements: Environmental conditions, lighting, camera angles, and equipment used for image
capture pose challenges for real-world applications. While existing approaches perform well in controlled laboratory
settings, their accuracy diminishes in outdoor conditions. Robust calibration is required to mitigate the effects of these
variables. Natural lighting conditions also introduce unpredictability due to variations in color.

Data reliability: Inadequate and unverified data information is a significant concern. Authors often fail to provide
comprehensive details about the devices and settings used in their experiments, making it challenging to verify results.
Transparency in testing and training data is essential.

The need for a universal approach: Creating a single system capable of identifying all types of plant leaf diseases is
a challenging task. Many proposed methods are specialized for specific diseases. Therefore, a universal approach to
disease identification should be developed.

In conclusion, authors should invest more effort in understanding and mastering the technologies they aim to employ.
Some researchers produce high-quality work by clearly outlining their methods, devices, and measurable criteria.

6. CONCLUSION

One notable advantage for farmers lies in the early detection and categorization of plant infections through image
processing strategies. This proactive approach enables farmers to prevent the spread of infections to critical leaf areas
before they affect neighboring leaves. Plant diseases have been subject to misidentification and misclassification
through various methods and frameworks employed by researchers. These diseases, exacerbated by climate change in
recent years, significantly contribute to economic losses and post-harvest damage in agriculture. Over time, several
effective methods have been developed for the detection, monitoring, and assessment of plant diseases. Traditional
approaches involve biochemical and pathological analyses, as well as expert visual interpretation. However, the recent
shift toward non-invasive technologies has garnered increased attention. This study provides a comprehensive
overview of disease classification techniques for plant disease detection and introduces a photo segmentation method
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that holds promise for automating the detection and categorization of plant leaf illnesses. The gathered data on
associated plant diseases contributes to delivering precise diagnoses. The proposed algorithm's efficiency in
recognizing and categorizing leaf diseases is underscored by its exceptional performance with minimal computational
resources. Furthermore, the potential for leveraging other algorithms to enhance classification accuracy is an exciting
prospect for future research in this domain.
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