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ABSTRACT

Structural health monitoring (SHM) plays a crucial role in ensuring the safety and durability of infrastructure, yet
traditional inspection methods remain slow and prone to human error. With the growth of computer vision, object
detection models such as YOLO (You Only Look Once) offer promising solutions for automating defect detection.
This study presents a comparative evaluation of YOLOV5, YOLOv10n, YOLOV10s, and YOLOv10m for identifying
cracks, spalling, and surface deterioration. Each version provides a different balance between accuracy, speed, and
computational cost—ranging from lightweight Nano models designed for faster deployment to larger Medium variants
focused on precision. By testing these models under consistent conditions, the research highlights their strengths and
limitations, aiming to guide the choice of suitable YOLO versions for reliable and efficient SHM applications.

1. INTRODUCTION

Ensuring the safety and durability of structures has always been central to structural engineering. With aging
infrastructure and growing demands for sustainability, the need for effective structural health monitoring (SHM) has
become more critical than ever. Traditional inspection practices, often dependent on manual surveys, are not only
time-consuming but also prone to human error. This has encouraged engineers and researchers to adopt advanced
technologies that can deliver faster, more reliable, and automated solutions.

In recent years, machine learning (ML) and computer vision have emerged as transformative tools in SHM, enabling
automated detection of cracks, spalling, corrosion, and other visible defects. Among object detection frameworks, the
YOLO (You Only Look Once) family has become especially popular because of its ability to perform classification
and localization in a single step, offering both speed and accuracy for real-time monitoring. This makes YOLO
particularly well-suited for large-scale infrastructure inspection tasks.

Over multiple versions, YOLO has evolved to achieve better trade-offs between precision, recall, and inference speed.
Earlier models established its capability for real-time detection, while newer ones introduced refined architectures and
training strategies to improve efficiency and adaptability.

This study provides a comparative analysis of YOLOvV5, YOLOv10n (Nano), YOLOv10s (Small), and YOLOv10m
(Medium) for structural defect detection. Each of these models represents a different balance between accuracy and
computational cost: Nano models prioritize lightweight deployment and speed, while Small and Medium versions
improve detection accuracy at the expense of higher resource use.

By evaluating these models under the same experimental conditions, the research aims to identify which version offers
the most suitable trade-off for structural health monitoring. The findings are expected to guide engineers and
practitioners in selecting the right YOLO variant for practical applications, ultimately contributing to safer, more
efficient, and cost-effective infrastructure management.

2. LITERATURE REVIEW

Structural health monitoring (SHM) has become increasingly important as infrastructure around the world ages and
faces additional stresses from urbanization and climate change. Conventional inspection methods—such as manual
surveys, visual assessments, and localized sensors—remain widely used but are often slow, resource-intensive, and
subject to human error. Scholars including Xu et al. [1] and Lydon et al. [2] have emphasized that such approaches
lack the scalability needed for frequent assessment of large structures like bridges, dams, and tall buildings. These
limitations have motivated a shift toward automated solutions powered by machine learning (ML) and computer
vision.

Deep learning-based computer vision has shown significant potential in identifying defects such as cracks, corrosion,
and surface wear [3]. Early use of convolutional neural networks (CNNs) produced promising accuracy but fell short
in terms of speed and adaptability for real-time use. Two-stage detectors like R-CNN and Faster R-CNN [4] improved
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localization by generating region proposals, but their high computational cost limited practical deployment in field
inspections.

In response, single-stage frameworks such as YOLO (You Only Look Once) have gained popularity for SHM.
Introduced by Redmon et al. [5], YOLO simplified detection by predicting bounding boxes and class probabilities in
one forward pass. Studies by Cha et al. [6] and Li et al. [7] demonstrated YOLO’s effectiveness in detecting surface
cracks and spalling much faster than multi-stage methods. Its architectural efficiency and speed make it well-suited for
real-world tasks like bridge deck surveys or tunnel inspections, where quick decision-making is critical.

Successive YOLO versions have continually improved accuracy, robustness, and efficiency. YOLOv3 and YOLOv4
incorporated advanced backbones and feature pyramid structures to enhance multi-scale detection [8]. Later versions
such as YOLOv5 and YOLOV10 introduced better training strategies, optimized loss functions, and lightweight
variants, which significantly improved performance under difficult field conditions [9]. As Deng et al. [10] noted,
these refinements allow YOLO models to perform reliably even in poor lighting, noisy environments, and cluttered
backgrounds.

Lightweight versions like YOLOV5s and YOLOV10n are particularly attractive for real-time inspections using drones
and low-power devices [11]. They prioritize speed and efficiency, while larger models such as YOLOv10s and
YOLOv10m offer higher precision and recall, making them more suitable for detailed evaluations. Comparative
studies [12-13] underline that the optimal choice of YOLO model depends on application context: lightweight
versions are well-suited for continuous or resource-limited monitoring, whereas medium-scale models are better for
accuracy-focused inspections.

Building on these insights, the present study evaluates YOLOv5s, YOLOv10n, YOLOvV10s, and YOLOv10m under
standardized conditions. The aim is to highlight their relative strengths and limitations in detecting structural defects,
ultimately providing engineers and practitioners with practical guidance for selecting the most effective YOLO
version for structural workability analysis.

3. METHOD

This study compares how different YOLO models—YOLOV5 and YOLOV10 variants (n, s, m)—perform in spotting
structural defects like cracks, spalling, and surface wear. Using a consistent set of labeled images enhanced with data
augmentation (rotation, flipping, brightness tweaks), each model was trained with the same settings and pretrained
weights to ensure fairness. Performance was measured through accuracy metrics like precision, recall, and mAP, as
well as efficiency indicators like speed (FPS) and model size. The goal? To find the right balance between detection
power and computational cost for real-world structural health monitoring.

3.1 Dataset

The foundation of this study is a dataset of structural images that represent common signs of deterioration and reduced
workability. The dataset contains annotated examples of defects such as cracks, spalling, and surface degradation,
which are typical indicators of structural weakness. These defects were chosen because they directly influence the
safety and serviceability of buildings and infrastructure. By focusing on visible surface-level damages, the dataset
ensures that the models are trained to detect features that are both practically important and commonly encountered
during structural inspections.

3.2 Pre-processing

Before training the models, the dataset underwent pre-processing to ensure consistency and robustness. Since YOLO
models expect input images of uniform size, all images were resized to a fixed resolution suitable for training. To
improve the generalization ability of the models, several data augmentation techniques were applied, including
horizontal and vertical flipping, random rotations, and brightness variations. These augmentations mimic real-world
conditions such as different viewing angles, changes in lighting, or partial occlusions, which are common in structural
inspection scenarios. By doing so, the models are encouraged to learn defect features that are invariant to these
environmental factors.

3.3 Model Selection

The models chosen for this study include YOLOvV5, YOLOv10n (Nano), YOLOv10s (Small), and YOLOv10m
(Medium). Each of these models represents a different trade-off between speed, accuracy, and computational
complexity.

By comparing these versions, the study aims to highlight how structural detection performance changes defect across
model scales and to identify the best balance for real-world applications.
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3.4 Comparison Strategy

The central idea of this methodology is to provide a fair and structured comparison of the selected YOLO models. All
models were trained on the same dataset, under the same pre-processing and augmentation strategies, and with
identical hyper parameter settings. Their performance was then compared across the evaluation metrics described
above.

By adopting this framework, the study ensures that the observed differences in performance can be attributed to the
architectures of the models themselves, rather than to inconsistencies in the experimental setup.

4. RESULT & DISCUSSION

This section presents the experimental results obtained from the comparative evaluation of YOLO models applied to
structural defect detection. The analysis focuses on YOLOvV5, YOLOv10n, YOLOv10s, and YOLOv10m, with
performance discussed in terms of precision, recall, inference speed (FPS). The results highlight both the strengths and
limitations of each model, providing a balanced perspective on their suitability for real-world structural health
monitoring.

4.1 Precision

Precision is a performance measure that indicates how many of the defects detected by the model are actually correct.
Table 4.1a ML YOLOv Model Precision value

S.No. Model Precision
A YOLOvVS 0.9316
B YOLOv10n 0.9369
C YOLOV10s 0.9133
D YOLOv10m 0.9336
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Graph 4.1a: YOLOVS5 Precision Curve
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Graph 4.1b: YOLOv10n Precision Curve
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Graph 4.1d: YOLO10m Precision Curve

Recall describes how well the model can identify all the actual defects present in a structure. In short, recall shows the
model’s ability to capture as many genuine defects as possible.

Table 4.2a ML YOLOv Model Recall value

S.No. Model Recall
A YOLOvV5 0.9344
B YOLOv10n 0.9106
C YOLOv10s 0.9465
D YOLOv10m 0.8891
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Graph 4.2a: YOLOV5 Recall Curve
@Internati- ' ™ ot B =1 0 ¢ 190

-6 iisass

Recall-Confidence Curve




INTERNATIONAL JOURNAL OF PROGRESSIVE
RESEARCH IN ENGINEERING MANAGEMENT

AND SCIENCE (IJPREMS)
(Int Peer Reviewed Journal)
Vol. 05, Issue 09, September 2025, pp : 187-193

gl[PREMS%

WWW.ijprems.com
editor@ijprems.com

e-1SSN :
2583-1062
Impact

Factor :
7.001

Sz Recalt-Confidence Curve

T —— crack
S driscoloration
exposed bricks
S spaliing
0.8 I . — i classes 0.98 at 0.000
06
;
04
0.2
0.0 v v v v
0.0 02 0.4 0.6 0.8 1.0
Canfidence
Graph 4.2b: YOLOv10n Recall Curve
<2 Recall-Confidence Curve
= i 2 crack
L
——— discoloration
\ QUPOST_bricks
‘ — spalling
08 w— 5l classes 0.98 at 0.000
0.6
=
i
0.4
0.2
0.0 |
.0 02 0.4 0.6 of 10
Configence
Graph 4.2c: YOLOv10n Recall Curve
Recall-Confidence Curve
1.0 - e o
) —y e —— crack
i e discoloration
\,, exposed_bricks
1 spalling
0.81 —all classes 0.98 at 0.000
0.6 4
3
v
&
0.4
0.2 1
0.0
0.0 0.2 0.4 0.6 0.8 1.0

Confidence

Graph 4.2d: YOLOv10m Recall Curve
4.3 F1 Score

The F1 score is a combined measure that balances both precision and recall in one value. The F1 score provides a

more realistic picture of the overall performance of a YOLO model.
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Table 4.3a: ML YOLOv Model F1 Score value

S.No. Model F1 Score
A YOLOV5 0.9330
B YOLOv10n 0.9235
C YOLOV10s 0.9296
D YOLOv10m 0.9108
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Graph 4.3a: YOLOV5 F1 Curve
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5. CONCLUSION
In summary, the findings indicate that:
o YOLOVS5 offers the most balanced and dependable performance across all metrics.
e YOLOV10s is the strongest in terms of recall, making it suitable where detecting every possible defect is the
priority.
e YOLOV10n provides a good balance of precision and efficiency, making it ideal for scenarios where speed and
resource limitations are key factors.
e YOLOv10m, while effective, showed weaker results compared to the others in this study.
Although the results confirm that YOLO-based models are highly effective for detecting structural defects, there is
room for further improvements and applications. Future research could focus on the following areas:

¢ Expanding Datasets — Training on larger and more diverse datasets, including different structures, environments,
and damage types, would enhance the robustness and adaptability of the models.

o Defect Severity Classification — Instead of only detecting the presence of defects, models could be trained to
classify them by severity (e.g., minor cracks vs. major cracks), which would provide more practical insights for
engineers.

e Hybrid Techniques — Combining YOLO with segmentation-based approaches could provide more detailed
localization and measurement of defects, improving both accuracy and usefulness of results.

To conclude, YOLOV5 emerges as the most balanced model, YOLOvV10s is best suited when maximizing detection is
critical, and YOLOv10n offers a practical trade-off for faster, resource-efficient applications. These results create a
strong foundation for future work in developing reliable, real-time, and scalable defect detection systems that can
transform structural health monitoring and improve safety outcomes.
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