

editor@ijprems.com

A REVIEW ON ANTI-INFLAMMATORY, ANTIOXIDANT ACTIVITY AND OTHER ESSENTIAL ACTIVITIES OF TRIDAX PROCUMBENT & MURRAYA KOENIGII

Bhosale Rohit Raju¹, Mr. Waghmare K. P², Dr. Sayyad G. A³, Dr. Garje S. Y⁴

^{1,2,3,4}Sajvpm's College Of Pharmaceutical Science And Research Centre, Kada(Beed), Maharashtra, India. Email: bhosalerohit661@gmail.com

ABSTRACT

The increasing prevalence of chronic inflammatory diseases and oxidative stress-related disorders has prompted a renewed interest in the therapeutic potential of natural compounds. This review focuses on two promising medicinal plants, Tridax procumbens and Murraya koenigii, renowned for their traditional uses and rich phytochemical profiles. Tridax procumbens, commonly known as coat buttons, exhibits notable anti-inflammatory effects attributed to its flavonoid and alkaloid content. Meanwhile, Murraya koenigii, or curry leaf, is celebrated for its antioxidant properties, primarily due to its high concentration of phenolic compounds and essential oils. This review synthesizes existing literature on the mechanisms underlying their anti-inflammatory and antioxidant activities, highlights relevant pharmacological studies, and discusses their potential applications in modern medicine. By exploring these plants, we aim to elucidate their roles as natural therapeutic agents, offering insights for future research and development in herbal medicine.

1. INTRODUCTION

The increasing burden of chronic diseases linked to inflammation and oxidative stress has spurred interest in the exploration of natural remedies with therapeutic potential. Inflammation is a complex biological response to harmful stimuli, and while it plays a critical role in the body's defense mechanisms, chronic inflammation is associated with various health conditions, including arthritis, cardiovascular diseases, and cancer. Concurrently, oxidative stress, resulting from an imbalance between free radicals and antioxidants in the body, has been implicated in aging and numerous diseases. In this context, medicinal plants have emerged as valuable sources of bioactive compounds that exhibit both anti-inflammatory and antioxidant properties. Tridax procumbens (commonly known as coat buttons) is a widespread herb in tropical regions, traditionally utilized for its wound-healing properties and as a remedy for various inflammatory conditions. Recent studies have highlighted its rich phytochemical composition, including flavonoids, alkaloids, and tannins, which contribute to its therapeutic effects. Similarly, Murraya koenigii (curry leaf) is another plant renowned for its culinary uses and medicinal benefits. Traditionally used in Ayurvedic medicine, it has garnered attention for its high antioxidant content, particularly phenolic compounds and essential oils. These constituents not only enhance its flavor but also provide protective effects against oxidative damage, suggesting potential applications in managing oxidative stress-related diseases. This review aims to consolidate the current understanding of the antiinflammatory and antioxidant properties of Tridax procumbens and Murraya koenigii. By examining their biochemical mechanisms and potential health benefits, we hope to highlight the significance of these plants in both traditional and modern therapeutic practices.

1.1 Murraya Koenigii

The literature on traditional medicine discusses its possible use as aMurraya koenigii, a member of the Rutaceae family, which includes more than 150 genera and 1600 species, is sometimes referred to as curry leaf or kari patta in Indian dialects(1). Murraya Koenigii is a highly prized plant because of its distinct scent and therapeutic benefits. Given that it generates substantial foreign cash, it is a significant export commodity from India. Every portion of the plant has had a variety of chemical components removed. The main chemical components that give it its strong, distinctive scent are O-phellandrene, P-caryophyllene, P-elemene, and gurjunene. The plant has a large amount of carbazole alkaloids(2). Ito evaluated bioactive coumarins, acridine alkaloids, and carbazole alkaloids from the Rutaceae family(3). Since ancient times, M. koenigii has been utilized extensively in Indian cuisine and has a variety of uses.

plant is said to have stomachic and tonic qualities. Roots and bark are utilized as

stimulant, as well as topically to treat animal bites and outbreaks. Raw green leaves are consumed to treat diarrhea, treat dysentery, and prevent vomiting. Traditionally, leaves and roots have also been employed as bitter,

anthelmintic, analgesic, effective in treating inflammation, itching, piles, leucoderma, and blood disorders(4,5). A number of comprehensive research investigations are currently being carried out to determine the effectiveness of whole plant or its components in various extract forms to cure various illnesses.

	INTERNATIONAL JOURNAL OF PROGRESSIVE	e-ISSN :
LIPREMS	RESEARCH IN ENGINEERING MANAGEMENT	2583-1062
	AND SCIENCE (IJPREMS)	Impact
www.ijprems.com	(Int Peer Reviewed Journal)	Factor :
editor@ijprems.com	Vol. 04, Issue 10, October 2024, pp : 364-373	7.001

M. koenigii is made up of a variety of chemical components that combine intricately to produce different pharmacodynamic effects. Many of the active ingredients that give the substance its therapeutic qualities have been identified and described.

Anti-oxidative, cytotoxic, antimicrobial, antibacterial, anti-ulcer, positive inotropic, and cholesterol-lowering properties have all been linked to this plant. Consequently, the current review compiles the body of research that has been done up to this point on the biological activities of the phytoconstituents that have been extracted, the pharmacological effects of extracts, and clinical investigations related to these topics(6-13).

The leaves are used to prevent vomiting and treat dysentery. They can be used topically for infections and bruising. Because of their analgesic properties, the leaves are useful in treating inflammation and itching. There have also been reports on this plant's several pharmacological properties, including its vasodilation, antibacterial, antidiabetic, antiulcer, analgesic, phagocytic, and antioxidant properties(14–16). Therehave alsobeen Several recent studies tha thavean ticipatedM. koenigiitopossess anti-inflammatoryactivitymainlyowing to the presence of its carbazole ealkaloids(17).

Taxonomical classification (18)

Kingdom	Plantae	
Sub-kingdom	Tracheobionta	
Superdivision	Spermatophyta	
Division	Magnoliophyta	
Class	Magnoliospida	
Subclass	Rosidae	
Order	Sapindales	
Family	Rutaceae	
Genus Murraya J.Koenig ex		
Species	Murraya Koenigii L. Spreng	

Synonyms(18)

English- Curry leaves; Kannada- Karibevu; Hindi- Karipatta, Mitha nim; Tamil- Kariveppilai; Malayalam- Kariveppu; MarathiKadhilimb; Sanskrit- Girinimba; Telugu- Karepeku; TuluBevusoppu; Portuguese- Folhas de caril; Russian-Listya karri; Spanish- Hojas de curry; Italian- Fogli di Cari; French- Feuilles de Cari; German- Curryblatter; Gujarathi-Mitho limado.

Table: 1 List of Active compounds of Murraya Koenigii and its biological activities

Murraya koenigii compounds	Source	Biological activity	Reference
Lutein	Leaves	Antioxidant activity	19
Tocopherol	Leaves	Antioxidant activity	19
		Hepatoprotective	20
Carotene	Leaves	Antioxidant activity	21
Koenimbine	Leaves	Antioxidant activity	19
O-methyl murrayamine A	Leaves	Antioxidant activity	22

IN'	FERNATIONAL J	OURNAL OF PROGRESS	SIVE e-ISSN :
IJPREMS RE	ESEARCH IN ENG	GINEERING MANAGEMI	ENT 2583-1062
	AND SCI	ENCE (IJPREMS)	Impact
www.ijprems.com	(Int Peer	Reviewed Journal)	Factor :
editor@ijprems.com	Vol. 04, Issue 10,	October 2024, pp : 364-373	7.001
O- methyl mahanine	Leaves	Antioxidant activity	22
Isomahanine	Leaves	Antioxidant activity	22
	Leaves	Anti caries	23
Bismahanine	Leaves	Antioxidant activity	22
Bispyrafoline	Leaves	Antioxidant activity	22
Euchrestine	Leaves	Antioxidant activity	24
Bismurrayafoline E	Leaves	Antioxidant activity	24
Mahanine	Leaves	Antioxidant activity	24
	Leaves	Anti caries	23
	Leaves	Hepatoprotective	20
	Stem and bark	Antimicrobial	25
		Topoisomerase I and II inhibitory activity	25
	Leaves	Hepatoprotective	20
1- formyl 3-mehoxy-6- methyl carbazole	Leaves	Anti bacterial and anti- fungal activity	26
6,7-dimethoxy-1-hydroxy-3- methyl carbazole	Leaves	Anti bacterial and anti- fungal activity	27
Mahanimbine	Leaves	Mosquitocidal	28
	Stem and bark	Antimicrobial	29
		Hepatoprotective	20
		Anti microbial	30
		Topoisomerase I and II inhibitory activity	30
		Antioxidant activity	30
		Antioxidant activity	31
		Toxicity on Culex quinquefsciatus larvae	32
	Stem bark	Anti fungal	33
Isomahanimbine	Leaves	Hepatoprotective	20
Murrayanol	Leaves	Mosquitocidal	28
	Leaves	Anti-microbial	30

Phytochemistry of Murraya koenigii

Murraya koenigii, commonly known as curry leaf, is rich in various bioactive compounds that contribute to its medicinal properties. Key phytochemicals identified in the leaves include:

- 1. Alkaloids (36)
- Murraya koenigii contains several alkaloids, including mahanimbine, which exhibits anti-inflammatory and antioxidant effects.
- 2. Flavonoids (36)
- The leaves are abundant in flavonoids such as quercetin, kaempferol, and rutin. These compounds are known for their potent antioxidant activities and potential to mitigate oxidative stress.
- 3. Phenolic Compounds: (36)
- Phenolic acids, including gallic acid and caffeic acid, have been identified in the leaves. These compounds contribute to the plant's antioxidant capacity and possess anti-inflammatory properties.

www.ijprems.com editor@ijprems.com

INTERNATIONAL JOURNAL OF PROGRESSIVE	e-1991
RESEARCH IN ENGINEERING MANAGEMENT	2583-1062
AND SCIENCE (IJPREMS)	Impact
(Int Peer Reviewed Journal)	Factor :
Vol. 04, Issue 10, October 2024, pp : 364-373	7.001

OF DDOODEGGUVE

. ICCN

4. Essential Oils:(34)

• The essential oil of Murraya koenigii contains various volatile compounds, including β -caryophyllene, α -pinene, and limonene, which exhibit antimicrobial, antioxidant, and anti-inflammatory activities.

5. Terpenoids:(34)

• Terpenoids, including α -terpineol and β -sitosterol, are present in the plant and are known for their beneficial effects on health, including anti-inflammatory properties.

6. Vitamins and Minerals (35)

• Curry leaves are also a good source of vitamins (such as A, B, and C) and minerals (like calcium and iron), which play a role in overall health and contribute to their medicinal benefits.

Sl. No.	Pharmacological Activity	Plant part	Extract
1.	Anti-inflammatory	Leaf	Ethanol, Petroleum ether, Chloroform, methanol
2	. Anti-amnesic	Leaf	Petroleum ether
3.	Hypocholesterolemic	Leaf	Ethanol
4.	Memory enhancer	Leaf	petroleum ether
5.	Anti-helminthic	Leaf	Alcoholic
6.	Anti-bacterial	Bark, Leaf	Petroleum ether , Alcohol
7.	Anti-cancer	Stem bark	Petroleum ether
8.	Anti-diabetic	Whole plant, fresh leaf, fruit.	Aqueous, methanol
9.	Antidiarrhoeal	Seeds	n-hexane
10.	Anti-fungal	Leaf	Petroleum ether, alcohol and acetone
11.	Radioprotective and chemoprotective	Leaf	Methanol
12.	Analgesic and Antinociceptive	Leaf	Methanol
13.	Anti-oxidant	Leaf	Methanol and Aqueous
14.	Cardiovascular	Leaf	Aqueous
15.	Skin pigmenting	Leaf	
16.	Anti-lipid peroxidative	Leaf	Methanol
17.	Anti-tumor	Leaf	Petroleum ether
18.	Anti-ulcer	Leaf	Aqueous
19.	Cytotoxicity	Roots, stem	Aqueous
20.	Wound healing activity	Leaf	Ethanol
21.	Phagocytic activity	Leaf	Methanol

Table 2: Pharmacological activities done on Murraya koenigii plant (3)	Т٤	able 2:	Pharmacc	ological :	activities	done on	Murrava	koenigii	plant.(36
---	----	---------	----------	------------	------------	---------	---------	----------	---------	----

2. Tridax procumbens

Tridax procumbens, a species of flowering plant in the daisy family, is sometimes referred to as coat buttons (37) or Tridax daisy. Its most well-known use is as a common weed and pest plant. Although it originated in the tropical Americas, it has now been transported to mild, tropical, and subtropical global areas with moderate climate. It is classified as a harmful plant. Fields are home to this weed. lawns, roadside vegetation, disturbed areas, meadows, and regions with tropical or semitropical climates. India has historically used Tridax procumbens to cure wounds as well as an insect deterrent, antifungal, and anticoagulant. The liquid that is taken out of the leaves called juice administered immediately on injuries. Folks utilized its leaf extracts to treat infectious skin problems. It treats gastritis, liver diseases, hepatoprotection, and heartburn in Ayurvedic medicine (38-39). Some traditional healers in India also employ Tridax procumbens to cure cuts, boils, and blisters (40).

editor@ijprems.com

INTERNATIONAL JOURNAL OF PROGRESSIVE RESEARCH IN ENGINEERING MANAGEMENT AND SCIENCE (IJPREMS) (Int Peer Reviewed Journal)

Vol. 04, Issue 10, October 2024, pp : 364-373

2583-1062 Impact Factor : 7.001

e-ISSN :

Taxonomic Classification		
Kingdom	Plantae	
Subkingdom	Tracheobionta	
Division	Magnoliophyta	
Subclass	Asteridae	
Clade	Angiosperms	
Order	Asterales	
Clade	Eudicots	
Family	Asteraceae	
Tribe	Heliantheae	
Genus	Tridax	
Species	T. procumbens	
Binomial name	Tridax procumbens	

Taxonomical classification(41) (42) (43)

Table 2: Common names of Tridax procumbens throughout the world

Country/region	Common names	References
Chinese	Kotobukigiku	
English	Coat buttons, tridax daisy	hauhan BS and Johnson DE, 2008; Ravikumar V, et al., 2005; Bhagwat DA, et al., 2008)
French	Herbe cailli	
Latin	Tridax procumbens Linn.	
Kannada	Jayanthi	
Spanish	Cadillo chisaca	
Sanskrit	Kumminnippacha	
Telugu	Gaddi chemanthi	
Tamil	Thata poodu	
Assamese	Bikhalyakarani	
Hindi	Ghamra	
Bengali	Tridhara	

e-ISSN : INTERNATIONAL JOURNAL OF PROGRESSIVE **RESEARCH IN ENGINEERING MANAGEMENT AND SCIENCE (IJPREMS)**

(Int Peer Reviewed Journal)

2583-1062 Impact **Factor** :

www.ijprems.com editor@ijprems.com

Vol. 04, Issue 10, October 2024, pp : 364-373

7.001

Oriya	Bishalya karani	
Malayalam	Chiravanak	
Marathi	Kambarmodi, jakhamjudi and tantani	
Gujarati	Ghaburi	(Saxena VK and Albert S, 2005)
Japanese	Kotobukigiku	
Thai	Tīn túkkæ	
Nigeria	muwagun, muriyam pachila, jayanti, vettukkaaya-thala	(Sureshkumar J, et al., 2017)
United States	Tridax daisy	
Guatemala	Bull grass, bull's herb	(Gamboa-Leon R, et al., 2014)

Table 3: Phytochemicals present in different parts of Tridax procumbens

Extraction	Plant part	Compounds	References
Chloroform extract and Chloroform water extract	Leaves	oid, saponin, coumarins, alkaloids, amino acids, diterpenes, phenol and flavonoids, amino acids, phlobatannin	
Acetone-water extract and acetone extract	Leaves	Steroid, tannin, saponin, anthocyanin, coumarins, alkaloids, diter- penes, phenol and flavonoids, , proteins, carbohydrate, antioxidant property	
Methanol extract Leaves Alkaloids, phlo- batan and cardi		Alkaloids, tannin, anthocyanins, proteins saponin, steroid, phlo- batannin, terpenoids, flavonoids, amino acids, phenols and cardiac glycosides, antibacterial activity, antioxidant properties	(Dhanabalan R, 2008)
Ethanol extract	whole plant	itin, Alkaloids, tannins, flavonoids, saponins, and phenolic compounds	(Petchi RR, et al., 2013)
Acetone extracts	Roots, leaves	Antibacterial activity	
Aqueous extract	Leaves	Blood clotting properties	
m ether and ethano- lic extract	Whole plant	cterial activity against B. faecalis due to presence of alkaloids, tannins, steroids, purines, carbohydrates, proteins	istudas S, et al., 2012)
Chloroform extract	Chloroform extract Whole plant Against B. faecalis and E. coli		istudas S, et al., 2012)
Aqueous extract	Leaves	DPPH radical scavenging activity (µg/mL)	(Singh P, et al., 2017)
Ethanol extract	Leaves	t, flavonoids, antibacterial activity against Pseudo- monas aeruginosa	gh P, et al., 2017; Pai C, et al., 2011)
Methanol extract fractioned with Dichloromethane (DCM)	ial parts of plant	9, 12-octadecadienoic acid ethyl ester (18.04%), 5-cholestane (12.42%), hexadecanoic acid ethyl ester (4.86%) and 9- octadecenoic acid ethyl ester (4.72%). Cholestane glycosides and rhamnosides are known for their potent cytotoxicity against malignant tumor cells	(Policegoudra RS, et al., 2014; Liu XT, et al., 2008)

INTERNATIONAL JOURNAL OF PROGRESSIVE RESEARCH IN ENGINEERING MANAGEMENT AND SCIENCE (IJPREMS)

(Int Peer Reviewed Journal)

editor@ijprems.com

Vol. 04, Issue 10, October 2024, pp : 364-373

2583-1062 Impact Factor :

e-ISSN:

7.001

Table 3: Pharmacological properties of Tridax procumbens

Pharmacological property	Active against	Phytochemicals responsible for the activity	Extraction procedure	Reference
Antifungal activity	C. albicans	Phenols, flavonoids, saponins, sterols and fatty acids, puerarin, esculetin, oleanolic acid, betulinic acid, centaurein, bergenin and centaureidin. Bio- active compounds 9, 12- octadecadienoic acid ethyl ester, cholestane, hexadecanoic acid ethyl ester and 9-octadecenoic acid ethyl ester.	Methanol extract, Dilated Cardiomyopathy (DCM) fraction	(Policegou- dra RS, et al., 2014)
Antioxidant activi- ties	DPPH (1, 1-diphenyl, 2-pic- ryl hydrazyl)	Phenolics, proteins, vitamins, flavonoids, tannins, catechins and pectins	Ethyl acetate and n- Butanol	(Habila JD, et al., 2010)
Anti-inflammato- ry activity	COX-1 and COX-2	Centaurein and bergenin, flavonoids and other polyphenols	Ethyl acetate extract	(Jachak SM, et al., 2011)
Antibacterial activity	Staphylococcus aureus, Kleb- siella pneumoniae, Salmonel- la typhi, Escherichia coli and Bacillus cereus	Alkaloids, flavanoids, glycosides and other aromatic compounds	Methanol and ethyl acetate extracts	
Anti-cancer activity	Potent cytotoxic activity against malignant tumor cells	5α-cholestane, monoterpenes (alpha and beta pinenes)	Crude flower aqueous and acetone extracts,	
Hepatoprotective activity	Reduced levels of aspartate transaminase, alanine trans- aminase, alkaline phospha- tase, lactate dehydrogenase and gamma glutamyl trans- ferase) and bilirubin	Flavonoids, procumbenetin	95% Ethanol extract	(Ravikumar V, et al., 2005)
Immunomodula- tory activity	Humoral and cell mediated immune system Sheep Red Blood Cells (SRBC) induced delayed type hypersensitivity reac- tions	Triterpenoides and sesquiterpene Flavonoidal fraction and saponin fraction	T. procumbens Ethanol Insol- uble Fraction (TPEIF) of the aqueous extract. EFTP (Ethyl Acetate Fraction) and NFTP (N Butanol Fraction)	(Tiwari U, et al., 2004)

PHARMACOLOGICAL ACTIVITY:

- 1. Wound Healing (59)
- 2. Hepatoprotective (60)
- 3. Immunomodulatory (61)
- 4. Antidiabetic Activity (62)
- 5. Antimicrobial Activity (63)
- 6.Anti-Cancerous Activity (64)
- 7. Hypotensive (65)
- 8. Repellency Activity (66-67)
- 9. Anti-Urolithiatic Activity (68)
- 10. Hypoglycemic and Antihyperglycemic Activity (69)
- 11. Anthelmintic Activity (64)

IJPREMS	INTERNATIONAL JOURNAL OF PROGRESSIVE	e-ISSN :
	RESEARCH IN ENGINEERING MANAGEMENT	2583-1062
	AND SCIENCE (IJPREMS)	Impact
www.ijprems.com	(Int Peer Reviewed Journal)	Factor :
editor@ijprems.com	Vol. 04, Issue 10, October 2024, pp : 364-373	7.001

2. REFERENCE

- [1] Satyavati GV, Gupta AK, Tendon N, Medicinal Plants of India, Vol-2, Indian council of medical research, New Delhi India, 1987,289-299.
- [2] Kumar VS, Sharma A, Tiwari R, Sushil K. Murraya Koenigii-a review, JMAPS 1999.
- [3] Ito C. Studies On Medicinal Resources of Rutaceous Plants And Development To Pharmaceutical Chemistry, Natural Med. 2000; 54: 117-122. 21(4).
- [4] Nadkarni KM, Indian Materia Medica, Edition 3, Vol. I, Popular Prakashan, Mumbai, 1976, 196.
- [5] Kirtikar KR, Basu BD. Indian Medicinal Plants, Edition 2, Vol. I, Oriental Enterprises, Uttarchal Pradesh, 1981, 473.
- [6] Shah KJ, Juvekar AR. Positive inotropic effect of Murraya koenigii (Linn.) Spreng extract on an isolated perfused frog heart. Indian Journal of Experimental Biology, 2006; 44:481-484
- [7] Shrinivasan K. Plant foods in the management of diabetes mellitus: spices as beneficial antidiabetic food adjuncts. Int. J. Food Sci. Nutr. 2005; 56(6): 399-414.
- [8] Manfred F, John MP, Dajaja DS, Douglas AK. Koenoline, a further cytotoxic carbazole alkaloid from Murraya koenigii. Phytochemistry, 1985; 24:3041-3043.
- [9] The Wealth of India, Council of Scientific and Industrial Research, New Delhi, 2003, 317.
- [10] Ram HNA, Hatapakki BC, Hukkeri IV, Aryavaidyan J. 2002; 16 (1), 40-44.
- [11] Kesari AN, Gupta RK, Watal G. Hypoglycemic Effects of Murraya koenigii on Normal and Alloxan- Diabetic Rabbits. Journal of Ethanopharmacolgy, 2005; 97:247-251.
- [12] Xie JT, Chang WT, Wang CZ, Mehendale SR, Li J, Ambihaipahar, R, et.al. Murraya koenigii reduces blood cholesterol and glucose level in ob/ob mice. American Journal of Chinese Medicine, 2006; 34(22),
- [13] Rahman MM, Gray AI. A benzoisofuranone derivative and carbazole alkaloids from Murraya koenigii and their antimicrobial activity. Phytochemistry, 2005; 66:1601-1606.
- [14] GuptaP,NahataA,DixitV.AnupdateonMurrayakoenigiispreng:a multifunctional Ayurvedicherb.ZhongXiYi JieHeXue Bao.2011; 9(8):824–33.
- [15] ChristinaL, AlbertS. Iron-complexes extracted from curry leaves and their use 2009. EP20090011884.
- [16] GangaRG,RamaRG,TrimurtuluG.Newsynergisticphytochem ical composition for the treatment of obesity 2009.WO2009 066303.
- [17] MukhopadhyayS,ChakrabortyM,MukherjeeT,BandyopadhyayA, KarD, Banerjee T,etal. Method for rtrea tmentofbronchialasthma 2012.US20120202868/2013,US8519154.
- [18] A review on Murraya koenigii :multipotential medicinal plant by Harish Handral and Anup Pandith Asian J Pharm Clin Res, Vol 5, Suppl 4, 2012, 5-14
- [19] Tachibana Y, Kikuzaki H, Lajis NH, Nakatani N, Comparison Of Anti Oxidative Properties Of Carbazole Alkaloids From Murraya koenigii Leaves, J. Agric. Food Chem.2003;51: 6461-6467.
- [20] Gupta RS, Singh D, Protective nature of Murraya Koenigii leaves against hepatosupression through antioxidant status in experimental rats. Pharmacologyonline, 2007; 1: 232-242.
- [21] Bhaskarachary K, Sankar Rao DS, Deosthale YG, Reddy V, Carotene Content Of Some Common And Less Familiar Foods Of Plant Origin, Food Chem. 1995;54:189-193.
- [22] Tachibana Y, Kikuzaki H, Lajis NH, Nakatani N, Anti Oxidative Activity Of Carbazoles Form Murraya koenigii Leaves, J. Agric. Food. Chem. 2001; 49: 5589-5594.
- [23] Inahata Keishiro, Shin Kunio, (Inahat Korya Kk, Nippon Funmatsu Ykuhin Kk. Japan), Jpn. Kokai Tokkyo Koho JP 08, 225, 420(96,225, 420) (Cl. A 01 N 65/00), 3 Sep 1996, Appl. 94/ 331, 644, 9 Dec 1994, 9 Pp. (Japan), Microbicides Useful In Pharmaceutical Cosmetic And Food Preparation.
- [24] Adesina SK, Olatunji OA, Brgenthal D, Reisch J, New Biogenetically Significant Constituents Of Clausena anisata And Murraya koenigii, Pharmazie, 1988;43(3): 221-222.
- [25] Ramsewak RS, Nair MG, Strasburg GM, Dewitt DL, Nitiss JL, Biologically Active Carbazole Alkaloids From Murraya koenigii, J. Agric Food. Chem, 1999; 47:444-447.
- [26] Xie JT, Chang WT, Wang CZ, Mehendale SR, Li J, Ambihaipahar, R, et.al. Murraya koenigii reduces blood cholesterol and glucose level in ob/ob mice. American Journal of Chinese Medicine, 2006; 34(22), 279-284.
- [27] Khuntia TK, Panda DS. Evaluation of antibacterial, antifungal and anthelmintic activity of Murraya koenigii Spreng. Pharma Sci Monit 2011; 2(2):105-110.
- [28] Das P. B., Chowdhury D. N., Choudhury B., Das G. K., Choudhury T. Roy, Studies On Some Alkaloids For Toxicity On The Larvae Of Culex qinquefasciatus, Ind J. Enviorn. Health, 1996; 38(2):81-85.

		INTERNATIONAL JOURNAL OF PROGRESSIVE	e-ISSN :
	LIDDEMS	RESEARCH IN ENGINEERING MANAGEMENT	2583-1062
	IJP KEMIS	AND SCIENCE (IJPREMS)	Impact
w	ww.iiprems.com	(Int Peer Reviewed Journal)	Factor :
edi	tor@iiprems.com	Vol. 04, Issue 10, October 2024, pp : 364-373	7.001
[20]		v DD Base DV Antifungel Activity Of Same Constituents Of	Mumore koonicii
[29]	Experimentia 1965: 21	(6): 340	Murraya koenigii,
[30]	Reisch J, Adebazo A	AC, Kumar V, Aladesanmi AJ, Two Carbazole Alkaloids From	Murraya koenigii,
	Phytochemistry,1994;	36(4):1073-1076.	, <i>, , ,</i>
[31]	Prakash V, Natarajan (CP, Studies On Curry Leaf, J. Food Sci. And Technol. 1974, 11: 284-	286.
[32]	Kureel SP, Kapil RS,	, Popli SP. Terpenoid Alkaloids Form Murraya koenigii Spreng-	I: Constitution Of
	Cyclomahanimbine, B	icyclomahanimbine And Mahanimbidine, Tetrahedron Lett, 1969;44:	3857-3862.
[33]	Tee E. Song, Caroteno	vid Composition And Content Of Malaysian Vegetables And Fruits B	y The AOAC And
[3/]	HPLC Methods, Food Mallavaranu Gonal P	Chem. 1991; 41:309-339. Pamesh S. Syamasunder KV. Chandrashekhara PS. Composition Of	Indian Curry Loaf
[34]	Oil, J. Essent. Oil. Res	.,1999; 11(2):176-178.	Indian Curry Lear
[35]	Prajapati ND, Purohit	SS, Sharma AK, Kumar T. A and book of Medicinal plants, 1st ed. Ind	ia: Agrobios India;
[26]	2003.	aniaii unultinatantial madiainal plant hu Harish Handral and Anup Da	ndith
[30] [37]	"Tridax procumbens"	Natural Resources Conservation Service PLANTS Database USDA	2015 Retrieved 15
[37]	December.	Tatular Resources Conservation Service (EATIVIS Database, OSDA.	2015 Refleved 15
[38]	Bhagwat D A, Killeda	ar S G, Adnaik R S. Anti-diabetic activity of leaf extract of Tr	idax procumbens,
	International Journal o	f Green Pharmacy, 2008, 126-128.	
[39]	Wani Minal, Pande Sn	ehal, More Nitin. Callus inductionstudies in Tridax procumbens L." Ir	ternational Journal
[40]	of Biotechnology App	lications. 2010; 2(1):11–4	when and Wanner al
[40]	districts of Telangana	Andhra Pradesh India" Annals of Plant Sciences 2013: 2(7):220.9	inda and warangal
[41]	wikipedia.org	And that 1 rades it, india : Annais of 1 rant Sciences. 2015, $2(1)$.220-9.	
[42]	https://www.google.co	m/url?sa=i&url=https%3A%2F%2Fplantwiseplusknowledgebank.org	g%2Fdoi%2Ffull%
	2F10.1079%2Fpwkb.s	pecies.55072&psig=AOvVaw3ciCW-s6Gi_mrlasDZ9E-3&ust= 172	8123394933000 &
	source=images&cd=vf	fe&opi=89978449&ved=0CBQQjRxqFwoTCPjd6M6_9IgDFQAAAA	AAdAAAAAhttps:
	//www.google.com/im	gres?q=dreamtime.com%20tridax%20procumbens%20grass&imgurl	=https%3A%2F%2
	Fthumbs.dreamstime.c	com%2Fb%2Fclose-up-tridax-procumbens-grass-flowers-herb-growin	g-roadside-
	dreamstime.com%2Ec	books-fresh-beautiful-garden-123/81900. jpg&imgrefuri= https%3.	A%2F% 2FWWW.
	looks-fresh-beautiful-g	varden-	ntryside-manand-
	image123781900&doc	vid=smJoeXQSrmMBaM&tbnid=libiL9RIcurTqM&vet=12ahUKEwj	WzNTtvvSIAxVw
	R2wGHbVnIWsQM3	bECBYQAAi&w=800&h=498&hcb=2&ved=2ahUKEwjWzNTtvvS	JIAxVwR2wGHb
	VnIWsQM3oECBYQ	AA	
[43]	Chauhan BS, Johnson	DE. Germination ecology of two troublesome Asteraceae species of	rainfed rice: Siam
F 4 4 1	weed (Chromolaena or	dorata) and coat buttons (Tridax procumbens). Weed Science. 2008; 5	6(4): 567-573.
[44]	Chem Sci 2005: 117(3	B-Sitosteroi-5-O-p-D-xylopyranoside from the flowers of fridax p	rocumbens Linn. J
[45]	Sureshkumar J. Silamb	parasan R. Avvanar M. An ethnopharmacological analysis of medicina	l plants used by the
[]	Adiyan community in	Wayanad district of Kerala, India. Eur J Integr Med. 2017; 12: 60-73.	
[46]	Gamboa-Leon R, Ve	ra-Ku M, Peraza-Sanchez SR, Ku-Chulim C, Horta-Baas A, R	osado-Vallado M.
	Antileishmanial activit	ty of a mixture of Tridax procumbens and Allium sativum in mice. Pa	rasite. 2014; 21.
[47]	Dhanabalan R. In viti	ro phytochemical screening and antibacterial activity of aqueous an	nd methanolic leaf
	extracts of Tridax proc	cumbens against bovine mastitis isolated Staphylococcus aureus. Eth	nobot Leafl. 2008;
[48]	2008(1): 144. Petchi RR Parasurama	an S. Vijava C. Antidiabetic and antihyperlipidemic effects of an etha	nolic extract of the
[-0]	whole plant of Tridax	procumbens (Linn.) in streptozotocin-induced diabetic rats. J Basic	Clin Pharm. 2013:
	4(4): 88.		2010;
[49]	Christudas S, Kulathi	ivel TM, Agastian P. Phytochemical and antibacterial studies of	leaves of Tridax
	procumbens L. Asian l	Pac J Trop Biomed. 2012; 2(1): 159-161.	
[50]	Pai C, Kulkarni U, Bo	rde M, Murali S, Mrudula P, Deshmukh Y. Antibacterial activity of	Tridax procumbens
[51]	With special reference	to nosocomial pathogens. Br J Pharm Res. 2011; 1(4): 164.	activity of Trider
[31]	procumbens extract P	harm Biosci J. 2017: 41-47.	activity of THUAX
	I		

INTERNATIONAL JOURNAL OF PROGRESSIVE

e-ISSN :

www.ijprems.com editor@ijprems.com

INTERNATIONAL JOURNAL OF FROGRESSIVE	C-10011 .
RESEARCH IN ENGINEERING MANAGEMENT	2583-1062
AND SCIENCE (IJPREMS)	Impact
(Int Peer Reviewed Journal)	Factor :
Vol. 04, Issue 10, October 2024, pp : 364-373	7.001

- [52] Liu XT, Wang ZZ, Xiao W, Zhao HW, Hu J, Yu B. Cholestane and spirostane glycosides from the rhizomes of Dioscorea septemloba. Phytochemistry. 2008; 69(6): 1411-1418.
- [53] Policegoudra RS, Chattopadhyay P, Aradhya SM, Shivaswamy R, Singh L, Veer V. Inhibitory effect of Tridax procumbens against human skin pathogens. J Herb Med. 2014; 4(2): 83-88.
- [54] Habila JD, Bello IA, Dzikwi AA, Musa H, Abubakar N. Total phenolics and antioxidant activity of Tridax procumbens Linn. Afr J Pharmacy Pharmacol. 2010; 4(3): 123-126.
- [55] Jachak SM, Gautam R, Selvam C, Madhan H, Srivastava A, Khan T. Anti-inflammatory, cyclooxygenase inhibitory and antioxidant activities of standardized extracts of Tridax procumbens L. Fitoterapia. 2011; 82(2): 173-177.
- [56] Ravikumar V, Shivashangari KS, Devaki T. Hepatoprotective activity of Tridax procumbens against d-galactosamine/lipopolysaccharide-induced hepatitis in rats. J Ethnopharmacol. 2005; 101(1-3): 55-60.
- [57] Tiwari U, Rastogi B, Singh P, Saraf DK, Vyas SP. Immunomodulatory effects of aqueous extract of Tridax procumbens in experimental animals. J Ethnopharmacol. 2004; 92(1): 113-119.
- [58] Bhagwat D.A., Killedar S.G., Adnaik R.S., 2008. Antidiabetic activity of leafextract of Tridax procumbens. Inn. Journal of Green Pharma, 2, 126-128.
- [59] Sailaja B., Bharathi K., Prasad K.V.S.R.G., 2011. Protective effect of Tridax procumbens L. on Calcium Oxalate Urolithiasis and oxidative stress. An International Journal of Advances in Pharmaceutical Sciences, 2, 9-14.
- [60] Rajkumar S., Jebanesan, 2007. A Tropical Biomedicine. An International Journal of Pharma and Bio Sciences, 24, 71–75.
- [61] Pareek H, Sharma S, Khajja B.S., Jain K., Jain G.C., 2009. BMC complementary and alternative medicine. Asian Pacific Journal of Tropical Biomedicine, 9, 48.
- [62] Salahdeen H.M., Yemitan O.K., Alada A.R., 2004. Effect of Aqueious leaf extract of Tridax procumbens on blood pressure and heart rates in Rats. African Journal of Biomedical Research, 7, 27–29.
- [63] Korakot A, Weerah W, Puttinan M, Prasat K, Prasert S, Ann B.E, Phil J. W, In Vitro screening for anthelmintic and antitumour activity of ethnomedicinal plants from Thailand, J. Ethnopharmcol, 2009; 123 (3): 475-482.
- [64] R.B. Mahato and R.P. Chaudhary. Ethnomedicinal study and antibacterial activities of selected plants of Palpa district, Nepal. Scientific World, 2005, 3 (3), 26-31.
- [65] Singh K and Ahirwar V, Acute and chronic toxicity study of Tridax procumbens on haemoglobin percent and blood sugar level of Sprague dawley rats. IJPI''s Journal of Pharmacology and Toxicology. 1 (1): 1-6, (2010)
- [66] U. Tiwari, B. Rastogi, P. Singh, D. K. Saraf and S. P. Vyas, Immunomodulatory effects of aqueous extract of Tridax procumbens in experimental animals. Journal of Ethnopharmacology 92:113-119, (2004.
- [67] Ravikumar V., Shivashangari K.S., Devaki T., 2005. Hepatoprotective activity of Tridax procumbens against dgalactosamine-lipopolysaccharide-induced hepatitis in rats. Journal Ethnopharmacol, 101, 55-60.
- [68] Tiwari U., Rastogi B., Singh P., Saraf D.K., Vyas S.P., 2004. Immunomodulatory effects of aqueous extract of Tridax procumbens in experimental animals. Journal of Ethanopharmacology, 9, 113-119.