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ABSTRACT 

In precision agriculture, detecting leaf diseases early is essential for improving crop yields and reducing losses. This 

project introduces an AI-based system designed to detect anthracnose disease in mango leaves using image analysis. 

The system uses Convolutional Neural Networks (CNNs) to analyses high-resolution images of mango leaves. CNNs 

are very good at finding patterns and anomalies in images, which helps in identifying disease symptoms accurately. 

After the CNN identifies these features, Artificial Neural Networks (ANNs) take over to classify the type of disease, 

providing a reliable diagnosis. This approach not only helps in early disease detection but also supports sustainable 

farming practices. By detecting diseases early, farmers can take timely actions to prevent the spread of the disease, 

reducing the need for widespread pesticide use and promoting healthier crops. Additionally, the system provides real-

time analysis and feedback, giving farmers actionable insights. This leads to better decision-making, efficient resource 

use, cost savings, and higher crop yields. 

1. INTRODUCTION 

Problem Definition- Develop an AI-based system for the accurate and efficient detection of anthracnose disease in 

mango leaves using image analysis. The system should be capable of identifying symptoms of anthracnose, such as dark, 

sunken lesions, and differentiating them from other potential leaf abnormalities. Anthracnose is a significant threat to 

mango cultivation, leading to reduced fruit quality and yield. Early and accurate detection of anthracnose on mango leaves 

is crucial for effective disease management and minimizing the impact on crop health. The proposed system will utilize 

Convolutional Neural Networks (CNNs) to analyses high-resolution images of mango leaves. CNNs are highly effective 

in extracting features from images, allowing them to recognize the specific patterns and anomalies associated with 

anthracnose. By training the CNN on a large dataset of annotated images, the system will learn to identify the 

characteristic dark, sunken lesions that signify the presence of the disease. 

Objectives 

To develop an AI-based system for the accurate and efficient detection of anthracnose disease in mango leaves using 

image analysis. The system will leverage Convolutional Neural Networks (CNNs) to identify symptoms of anthracnose, 

such as dark, sunken lesions, and differentiate them from other potential leaf abnormalities. This early and precise 

detection is crucial for effective disease management, aiming to minimize the impact on crop health and improve mango 

yield and quality The system will be trained on a large dataset of annotated images to ensure high accuracy in identifying 

the characteristic symptoms of anthracnose. By utilizing advanced image processing techniques, the system will be able 

to analyses high- resolution images and extract relevant features that indicate the presence of the disease. The ultimate 

goal is to provide farmers with a reliable tool for early disease detection. 

Scope of the Project 

The scope of this project includes collecting and annotating images of mango leaves, developing a CNN model to detect 

anthracnose symptoms, and using ANNs to classify these symptoms.  The system will be integrated into a user-friendly 

interface for real-time analysis. It will be validated and tested for accuracy, then deployed for farmers with training and 

support. The goal is to enable early disease detection, promote sustainable farming, and improve crop yield and quality. 

Additionally, the system will provide actionable insights to farmers, helping them make informed decisions. This will 

lead to more efficient resource use and cost savings, ultimately enhancing overall agricultural productivity. 

2. LITERATURE REVIEW 

AI-based leaf disease detection has garnered significant attention in recent years due to its potential to revolutionize 

agriculture by enabling early and accurate diagnosis of plant diseases. Advances in machine learning, particularly deep 

learning, have driven the development of models capable of identifying diseases from leaf images with high precision. 

Techniques such as convolutional neural networks (CNNs) are widely used for image classification and feature 

extraction, while datasets like Plant Village have facilitated large-scale training and evaluation. Research highlights the 

importance of preprocessing methods like image augmentation and segmentation to improve model robustness. 

Furthermore, innovations such as transfer learning and edge AI aim to enhance efficiency and deployment in resource- 

constrained settings, including mobile and IoT devices. Despite these advancements, challenges remain, such as the 

need for diverse datasets, addressing overfitting, and generalizing across different environmental conditions and crop 

species. This evolving field continues to promise tools for sustainable crop management and enhanced food security. 



 
www.ijprems.com 

editor@ijprems.com 

INTERNATIONAL JOURNAL OF PROGRESSIVE 

RESEARCH IN ENGINEERING MANAGEMENT 

AND SCIENCE (IJPREMS) 

(Int Peer Reviewed Journal) 

Vol. 04, Issue 11, November 2024, pp : 2224-2238 

e-ISSN : 

2583-1062 

Impact 

Factor : 

7.001 
 

@International Journal Of Progressive Research In Engineering Management And Science              Page | 2235 

3. METHODOLOGY 

Project Planning and Analysis 

The goal of AI-based leaf disease detection is to enable accurate, efficient, and early identification of plant diseases to 

enhance agricultural productivity and sustainability. By leveraging advanced machine learning techniques, particularly 

deep learning, these systems aim to analyse leaf images and detect diseases with precision, minimizing the need for 

manual inspection. This technology helps farmers take timely actions, reduce crop losses, and optimize the use of 

pesticides and resources. 

Market Analysis: The market for AI-based leaf disease detection is rapidly growing, driven by the increasing demand 

for precision agriculture and sustainable farming practices. rising concerns about crop losses due to diseases and pests, 

farmers and agribusinesses are adopting AI-powered solutions to improve productivity and reduce pesticide use. 

Risk Assessment: The risks of AI-based leaf disease detection include potential inaccuracies due to biases or limited 

diversity in training Datasets, leading to misdiagnosis or undetected diseases. Environmental factors such as lighting, 

background, and leaf condition can also impact model performance. Overreliance on AI systems without human 

verification may result in flawed decisions, affecting crop health and yield. 

Software and Hardware Requirements Software Requirements 

User Interface: The application will feature a clean, modern UI that supports both mobile and web platforms. Essential 

features will include: 

A dashboard summarizing user progress. 

Functional Requirements: 

1. Image Acquisition: Capture high-quality images of leaves for analysis. 

2. Preprocessing: Enhance images and remove noise for accurate detection. 

3. Feature Extraction: Identify key patterns and characteristics of diseased areas. 

4. Classification: Use AI models to classify leaf diseases based on extracted features. 

5. Result Output: Provide clear diagnosis and suggestions for disease management. 

Non-functional Requirements: 

Performance: The application should respond within 2 seconds for all user inputs. 

Security: Data encryption and compliance with HIPAA regulations will be prioritized to protect sensitive health 

information. 

Usability: User testing will be conducted to ensure intuitive design and ease of navigation. 

Hardware Requirements Minimum Requirements: 

CPU: Intel Core i3 or equivalent. RAM: 4 GB. 

Storage: 1 GB of free disk space. 

Recommended Requirements: 

CPU: Intel Core i5 or higher for better processing speeds. 

RAM: 8 GB or more to handle multiple users and data efficiently. 

Storage: SSD recommended for faster data access. 

Project Overview- The AI-based leaf disease detection project focuses on developing a system that leverages machine 

learning to identify plant diseases from leaf images accurately and efficiently. By utilizing techniques like deep learning, 

the system aims to assist farmers in diagnosing diseases early, enabling timely intervention to prevent crop losses. This 

innovative approach supports sustainable agriculture, reduces dependency on manual inspections, and promotes better 

resource management for enhanced food security. 

System Architecture 
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UML Diagram 

 

4. DATA SET DESCRIPTIONS 

In developing an AI system for detecting anthracnose diseases, various types of datasets can be utilized. Each type serves 

a specific purpose in training, validating, and testing the model. Here are the main types of datasets relevant to 

anthracnose disease detection: 

1. Image Datasets: 

Healthy vs. Infected Images: A collection of images showing healthy plants and those infected with anthracnose, with 

clear labelling. 

Diverse Conditions: Images taken under different lighting conditions, angles, and backgrounds to improve model 

robustness. 

Varieties of Plants: Images from multiple plant species that are susceptible to anthracnose (e.g., tomatoes, peppers, 

avocados). 

2. Annotated Datasets: 

Segmentation Masks: Datasets with pixel-level annotations indicating which parts of the plant are affected by the disease. 

Severity Labels: Images labelled according to the severity of infection (e.g., mild, moderate, severe) to train models to 

assess disease progression. 

3. Temporal Datasets: 

Time-Series Images: A sequence of images of the same plant over time to study the progression of anthracnose and the 

effect of treatments. 

4. Multi-Modal Datasets: 

Integration of Various Data Types: Datasets combining images, environmental data, and agronomic practices to create 

a comprehensive model for predicting anthracnose outbreaks. 

5. User-Generated Datasets: 

Crowdsourced Data: Datasets collected from farmers and agricultural workers through mobile apps or web platforms, 

providing real-world examples of anthracnose in various locations. 

6. Experimental Datasets: 

Controlled Experiments: Data from controlled experiments testing different fungicides or treatment methods to measure 

their effectiveness against anthracnose. 

7. Historical Datasets: 

Previous Outbreak Reports: Historical data on anthracnose outbreaks, including Geographical locations, affected crop 

types, and management practices used, to Identify patterns and risk factors. 

8. Video Datasets: 

Real-Time Monitoring: Videos capturing the plant growth process, allowing for the observation of disease progression 

and symptom emergence over time. 

Implementation 

1. Data Collection: 

Image Acquisition: Collect high-quality images from various sources (field captures, drones, mobile apps) to ensure 

diversity and representativeness. 

Labelling: Use tools to annotate images accurately, indicating healthy and infected areas, and specify severity levels. 
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2. Data Preprocessing: 

Image Resizing: Standardize image dimensions to ensure consistency across the dataset, which is essential for model 

input. 

Normalization: Scale pixel values to a uniform range (e.g., 0 to 1) to help the model converge faster during training. 

Data Augmentation: Enhance the dataset by applying transformations such as: Rotation, Flipping 

(horizontal/vertical),Zooming, Brightness and contrast adjustments, Shearing 

Color Space Transformation: Convert images to different color spaces (e.g., HSV, LAB,RGB) to highlight features 

relevant to anthracnose detection. 

3. Feature Extraction: 

Image Filtering: Use techniques like Gaussian blur or median filtering to reduce noise and enhance relevant features in 

the images. 

Edge Detection: Implement algorithms such as Canny edge detection to highlight the boundaries of infected areas, which 

can improve segmentation accuracy. 

4. Data Splitting: 

Training, Validation, and Test Sets: Split the dataset into training (70%), validation (15%), and test (15%) sets to 

evaluate the model's performance effectively. 

Stratified Sampling: Ensure that the splits maintain the same proportion of classes (healthy vs. infected) to prevent class 

imbalance issues. 

5. Dimensionality Reduction: 

Principal Component Analysis (PCA): Reduce the number of features while preserving variance, which can help in 

speeding up the model training and improving performance. 

t-Distributed Stochastic Neighbor Embedding (t-SNE): Visualize high-dimensional data in a lower-dimensional space 

to analyze clusters of healthy and infected plants. 

6. Data Balancing: 

Oversampling: Increase the number of samples in the minority class (e.g., infected plants) to balance the dataset and 

prevent bias towards the majority class. 

Undersampling: Decrease the number of samples in the majority class if there is an excess of healthy plant images, 

although this can lead to loss of information. 

5. METHODS & ALGORITHMS 

Anthracnose is a fungal disease affecting various plants, characterized by dark, sunken lesions on leaves, stems, and 

fruits. Detecting anthracnose early is crucial for effective management. Here are some methods and algorithms for 

anthracnose disease detection using AI: 

1. Image Processing Techniques: 

Preprocessing: Image enhancement techniques like histogram equalization or color normalization can improve the 

quality of plant images, making it easier to detect symptoms. 

2. Deep Learning Techniques: 

Convolutional Neural Networks (CNNs): Highly effective for image classification tasks, CNNs can automatically 

learn features from images of plants. They can distinguish between healthy and diseased plants with high Accuracy. 

ANN (Artificial Neural Network): A general-purpose neural network that models complex patterns in data Using 

interconnected nodes (neurons) but does not specifically leverage Spatial hierarchies. 

3. Hybrid Approaches: 

Combining traditional image processing techniques with deep learning Models can enhance detection accuracy. For 

example, using image Segmentation to isolate leaves before applying a CNN for classification. 

4. Data Collection and Augmentation: 

Dataset Creation: Collecting a diverse dataset of images representing Various stages of anthracnose on different plant 

species. 

Data Augmentation: Techniques such as rotation, flipping, and color Adjustment can help create a more robust model 

by providing a larger Variety of training data. To evaluate the AI model for detecting anthracnose in mango leaves, we 

will use several Key metrics. Accuracy measures how often the model correctly identifies healthy and infected leaves. 

Precision focuses on how many of the model’s positive identifications are Actually correct. Recall indicates how well 

the model identifies all actual positive cases. 
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The F1 Score balances precision and recall, providing a single performance measure. The Confusion Matrix offers 

detailed insights into the model’s true and false predictions. Additionally, ROCAUC evaluates the model’s ability to 

differentiate between classes, ensuring the model is both accurate and reliable for practical use. 

6. CONCLUSION 

The conclusion of using AI for anthracnose disease detection highlights its significant potential to enhance early 

identification and precise diagnosis, which are essential in preventing disease spread and reducing crop losses. AI-

powered methods, such as machine learning and deep learning models, can analyze plant images, detect symptoms, and 

classify disease stages more accurately and quickly than traditional manual approaches. These models can be trained on 

large datasets to recognize anthracnose’s specific symptoms, even in early stages, allowing for timely intervention and 

more targeted management strategies. 

The integration of AI in anthracnose detection offers farmers a valuable tool to monitor crop health in real-time, often 

through user- friendly mobile applications or automated imaging systems. By reducing the reliance on expert 

inspections, AI systems can provide scalable solutions that benefit both small-scale and commercial agricultural 

operations. However, challenges remain, such as ensuring access to high-quality, diverse datasets for model training, 

improving model interpretability, and addressing varying environmental conditions that may affect accuracy. 

In conclusion, while further refinement and field testing are needed, AI presents a promising, cost-effective, and scalable 

approach to combatting anthracnose and improving crop resilience and productivity in agricultural sectors worldwide 

7. FUTURE SCOPE 

The future scope of anthracnose disease detection using AI is promising, especially with advances in precision 

agriculture and digital technology. 

Here are key points: 

1. Early Detection and Precision: AI-powered image analysis can help Detect anthracnose symptoms early, allowing 

timely intervention and Reducing crop loss. 

2. Improved Accuracy: Machine learning models can increase the Accuracy of disease identification by analyzing 

various features of Infected plants, reducing the chances of misdiagnosis. 

3. Remote Monitoring: AI integrated with drones or satellite imagery Can enable large-scale, remote monitoring of 

crops, providing a real- Time assessment across vast areas. 

4. Data-Driven Insights: AI can analyze historical and real-time data to Predict disease outbreaks based on 

environmental factors, improving Overall crop management. 

5. Cost-Effective Solutions: AI can reduce the need for frequent physical Inspections by experts, cutting down costs 

while providing accessible Solutions for small-scale farmers. 
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