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ABSTRACT 

Graph matching, a crucial approach in pattern recognition, involves comparing a graph representing an unknown 

pattern with a database of models. The complexity of this process increases when dealing with a large model graph 

database. Existing literature explores techniques to mitigate this complexity. This paper suggests a strategy of 

extracting basic graph features to eliminate potential candidate graphs from the database. The C4.5 algorithm is 

employed to identify the most influential set of features and construct a decision tree for effective candidate 

elimination. Experimental results validate the efficiency of this proposed method. 
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1. INTRODUCTION 

Graph matching, a crucial approach in pattern recognition, involves comparing a graph representing an unknown 

pattern with a database of models. The complexity of this process increases when dealing with a large model graph 

database. Existing literature explores techniques to mitigate this complexity. This paper suggests a strategy of 

extracting basic graph features to eliminate potential candidate graphs from the database. The C4.5 algorithm is 

employed to identify the most influential set of features and construct a decision tree for effective candidate 

elimination. Experimental results validate the efficiency of this proposed method. In the realm of structural pattern 

recognition, graphs serve a pivotal role in representing patterns. Objects or their components are denoted by nodes, 

and relationships between these entities are conveyed through edges, enabling the explicit representation of structural 

connections. This leads to the recognition challenge of graph matching, where a graph extracted from an unknown 

input is compared with a database of model graphs for identification or classification [1,2,3]. Applications encompass 

character recognition [4,5], schematic diagram interpretation [6,7], shape analysis [8], and 3-D object recognition [9]. 

While graph matching is appealing for its universal representation, it poses computational challenges due to its 

exponential time and space complexity. Various indexing mechanisms have been proposed to tackle this complexity in 

large databases [3,12,10,11]. This paper introduces a novel approach leveraging machine learning techniques, 

specifically addressing the problem of graph isomorphism detection for simplicity. The proposed method revolves 

around using easily extractable features, such as the number of nodes or edges, their labeled counts, and edge 

incidences. Identical values of these features in the input graph and a candidate from the database are essential for 

isomorphism. Consequently, quick tests using these simple features can exclude certain candidates, reducing the set 

requiring expensive isomorphism tests. However, the abundance of simple features raises the question of which are 

most effective for rapid candidate exclusion. To address this, machine learning techniques, particularly the C4.5 

algorithm [13], are applied. The subsequent section provides a brief introduction to C4.5, followed by its application 

to reduce the number of candidate graphs in a database. Section 4 presents experimental results, with conclusions 

drawn in Section 5. 

2. INTRODUCTION  

C4.5, a decision tree generation program [13], is chosen for its renowned capabilities in this domain. Operating on the 

divide and conquer paradigm, let's consider the set of training instances denoted as S, with classes C1, C2, C3, ..., Cn. 

Three scenarios arise: 

 If S contains instances all belonging to a class C j, the decision tree for S is a leaf specifically identifying C j. 

 If S is empty, the decision tree for S becomes a leaf. However, the associated class must be determined from 

sources beyond S, such as domain-specific background information or the overall majority class. 

When s comprises instances spanning multiple classes, it undergoes refinement into subsets heading towards single-

class collections. A test T, based on a single attribute with mutually exclusive outcomes O1, O2, O3, ..., On, is chosen. 

S is then partitioned into subsets S1, S2, S3, ..., S l, where S j contains instances with outcome On. The decision tree 

for s now incorporates a decision node identifying the test, with one branch for each possible outcome. This recursive 

process is applied to each subset, constructing decision trees tailored to their respective subsets of training instances. 

The definition of the gain ratio used by C4.5 is defined below: 
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3. GRAPH CANDIDATE ELIMINATION USING C4.5: 

Given an input graph g and a database with n model graphs 1,2,...,g1,g2,...,g n, where each gi represents a pattern class 

Ci, we aim to identify a graph g j in the database that is isomorphic to g. Formally, g and g j are isomorphic if a 

bijective mapping f exists from the nodes of g to the nodes of g j, preserving the structure of edges and all node and 

edge labels under f. In the context of a given input graph g and a database containing n model graphs g1, g2, ..., g n, 

each representing a pattern class Ci, our objective is to identify a graph g j within the database that is isomorphic to g. 

Graphs g and g j are considered isomorphic if there exists a bijective mapping f from the nodes of g to the nodes of g j, 

preserving the structure of edges and all node and edge labels. Our focus is on developing an efficient procedure to 

reduce the number of potential candidate graphs in the database.  

The graph candidate elimination method comprises three stages. In the initial stage, we extract features from the 

graphs, including the number of vertices with a given label (feature-type 1), the number of incoming edges per vertex 

(feature-type 2), and the number of outgoing edges per vertex (feature-type 3). 

The choice of these features is based on their ease of extraction, requiring only O(m^2) time and space for a graph 

with m vertices. Despite their simplicity, these features efficiently narrow down potential candidate graphs. For 

instance, if the input graph has three vertices label A, the search for isomorphic graphs in the database focuses solely 

on those with exactly three A-label vertices. Once extracted, these features are fed into C4.5. In the second stage, C4.5 

constructs a decision tree using various combinations of the three feature types. The third stage involves determining 

candidate graphs matching the input graph.  

This process entails extracting the input graph's features, traversing the decision tree, and either reaching a leaf node, 

indicating potential matches, or not reaching one, signal the absence of isomorphic graphs in the database. 

The extraction cost for features from a graph with m vertices is O(m^2), traversing a decision tree of depth k costs 

O(k), and matching an input graph against c candidate graphs is O (c * m^2). For a database with n graphs, each of 

size m, finding a match for an input graph incurs a cost of O (c * m^2 + m^2 + k), where the decision tree has k levels, 

and each leaf in the tree is associated with a cluster of c graphs. 

O (c · mm) + O(m2) + O(k) (1) 

has to be compared to   O (n · mm) (2) 

which is the computational complexity of the straightforward approach, where we match the input graph to each 

element in the database.  

Because c<n or c << n, a significant speedup over the straightforward approach can be expected. 
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4. EXPERIMENTAL RESULTS 

The efficiency of decision trees in our study is significantly influenced by two parameters: the cluster size (c) and the 

depth of the decision tree (k). Through various experiments conducted on a database of randomly generated graphs, 

we explored these parameters, considering factors such as the number of vertices, edges per graph, and the overall 

number of graphs in the database.  

To maintain consistency, we omitted edge labels, assuming their influence would be similar to node labels. The 

experimental process involved generating a database of random graphs, extracting features, and utilizing C4.5 to 

construct decision trees for graph classification. In the final step, we analyzed the decision trees, recording average 

and largest cluster sizes, along with the depth of the constructed trees. 

In the initial set of experiments, our focus was on the first category of features derived from graphs, specifically the 

frequency of various vertex labels. The decision tree used to classify the graphs in the database was constructed solely 

based on information from this feature type. We employed a straightforward histogram to capture the occurrence of 

each vertex label. Starting with only 5 labels, we progressively increased the count to 100. Simultaneously, we varied 

the number of vertices per graph from 5 to 50, and the edges ranged from 8 to 480.  

This experiment involved a database of 1000 graphs, each having an identical number of nodes and edges. Figure 1 

illustrates the average cluster size, revealing that as the number of vertices increases, the average cluster size tends to 

decrease. 

 

In most experiments, the average cluster size consistently reached a value of 2. This implies that, on average, only 2 

graphs out of 1000 are required for conducting a test on graph isomorphism. As anticipated, the cluster size diminishes 

with an increase in the number of vertices or labels. This expected outcome aligns with the notion that a higher 

number of vertices or labels per graph enhances graph distinctiveness. Consequently, C4.5 demonstrates the ability to 

generate improved classification trees with a reduced cluster size. 

The second series of experiments explored vertex incidence frequency, considering both incoming and outgoing edges 

separately. The study involved increasing the number of vertices from 5 to 50, with edge variations ranging from 8 to 

480. The database comprised 1000 instances, and no label information was utilized. Figure 2 illustrates the average 

cluster size for scenarios involving both incoming and outgoing edges. The findings parallel those observed in the first 

feature-type case, indicating that as the vertex count increases, the cluster size tends to decrease.  
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In the third set of experiments, we employed pairs of features to construct a decision tree for classifying graphs in the 

database. Specifically, three pairs of features were utilized: (feature–type 1, feature–type 2), (feature–type 1, feature–

type 3), and (feature–type 2, feature–type 3). Parameters consistent with feature–type 1 were used, involving 1000 

graphs per database, 5-50 nodes per graph with uniform size across all graphs, and 5-100 vertex labels. The results 

from combining feature–type 1 and feature–type 2 are depicted in Fig. 3, revealing an average cluster size of 2 for 

most cases, except when dealing with graphs of size 5, where the average cluster size was 3.  

 These outcomes surpassed those obtained when any of the three individual features were employed for classification. 

The incorporation of two features provided additional information, enabling C4.5 to achieve more accurate graph 

classification.  

 

Fig: 5                                                Fig: 6 

Results for the last two pairs of features, (feature–type 1, feature–type 3) and (feature–type 2, feature–type 3), 

exhibited similar outcomes. In both cases, the average cluster size was 2, and the results surpassed those achieved 

using a single feature for graph classification. In the fourth set of experiments, we combined all three types of features, 

and the results are presented in Fig. 4." 

 

Fig :7                                                     Fig :8 

 Figures 7,8, illustrate the outcomes derived from utilizing feature pairs. In each instance, a significant enhancement is 

evident when compared to outcomes employing feature–type 1. The tree depth converges more rapidly to an average 

value of 11, and even in the most challenging scenario (few vertices, numerous labels), the decision tree depth is 

merely 25. Combining features not only aids in diminishing average cluster size but also contributes to reducing tree 

depth. Additionally, the results indicate negligible differences among the three pairs of features. Greater enhancement 

can be achieved through the incorporation of additional feature types, as evidenced by the outcomes when employing 

feature-types 1–3 collectively (refer to Fig. 8). In this scenario, the tree depth converges more swiftly to an average of 

11. Furthermore, with the utilization of more features, the tree depth in the most challenging scenario (few vertices, 

high number of labels) is below 25, marking a nearly 50% reduction compared to the case involving feature-type 1. 

To provide tangible insights into the potential time savings facilitated by the method proposed in this paper, we 

conducted measurements on quantities in equations (1) and (2) using a set of graphs, each with 20 vertices. Employing 

Ullman's algorithm [14] on a standard workstation, matching an input graph with a database of 1000 graphs takes 

approximately 20 seconds. Meanwhile, traversing a decision tree of depth 11 consumes 0.3 seconds, and feature 

extraction requires 0.08 seconds. Excluding the offline time for decision tree construction, our method demands only 

0.4 seconds compared to the 20 seconds required for a full search. Given the exponential complexity of graph 

matching, larger speedup gains can be anticipated for more extensive graphs. 
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5. CONCLUSION 

This paper introduces an innovative graph matching approach utilizing decision trees, offering distinct advantages 

such as a significant reduction in the number of candidate graphs in the database and the requirement for easily 

extractable features. The method entails constructing a decision tree that categorizes graphs based on selected features.  

To find a match for a given graph, one navigates down the decision tree. In the best-case scenario, the leaf node 

contains just one graph, while in the worst case, it may include several. The method's complexity is governed by three 

parameters: the cluster size associated with the leaf node, the graph size, and the depth of the decision tree. 

We conducted numerous experiments to explore the average cluster size at the leaf node and decision tree depth using 

a 1000-graph database. The graphs had 5 to 50 vertices with 5 to 100 vertex labels. Results indicate that the average 

cluster size is influenced by the number of vertices and vertex labels; larger graphs and more labels result in smaller 

clusters. Combinations of two or three features yield better results in minimizing cluster size.  

Our proposed method demonstrates significant computation time savings for graph matching, with fast feature 

extraction and decision tree traversal effectively narrowing down candidates for expensive isomorphism tests. 

The approach is tailored for graph isomorphism and future research will explore its applicability to subgraph 

isomorphism and approximate graph matching. Additionally, investigating more complex features like vertex-edge 

chains is part of our future work to enhance classification accuracy. 
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