
  

www.ijprems.com 

editor@ijprems.com 

INTERNATIONAL JOURNAL OF PROGRESSIVE 

RESEARCH IN ENGINEERING MANAGEMENT 

AND SCIENCE (IJPREMS) 

(Int Peer Reviewed Journal) 

Vol. 04, Issue 12, December 2024, pp : 378-384 

e-ISSN : 

2583-1062 

Impact 

Factor : 

7.001 
 

@International Journal Of Progressive Research In Engineering Management And Science                 Page | 378 

ANOMALY DETECTION IN DEFENSE COMMUNICATION 

Raghuveer Singh Rathore1, Dr. Sandeep Gupta2 
1Student AI &DS Poornima Institute of Engineering and Technology, Sitapura, Jaipur Jaipur, India. 

2Ass. Professor AI &DS Poornima Institute of Engineering and Technology, Sitapura, Jaipur Jaipur, India. 

2021pietcaraghuveer039@poornima.org 

sandeep.gupta@poornima.org 

DOI: https://www.doi.org/10.58257/IJPREMS37503 

ABSTRACT  

Defence communication networks are critical infrastructures of core military operations where sensitive information is 

securely and reliably transmitted. Such networks face a lot of sophisticated cyberattacks, such as intrusion attempts and 

jamming attempts, data exfiltration, and hardware malfunctions that may jeopardize the success of any mission. 

Anomaly detection systems form a salient safeguard since they help identity deviations in expected behaviours  from 

the network in order to proactively mitigate threats. Advanced machine learning and deep learning models will be used 

in this project for developing robust anomaly-detection mechanisms for defence communications with specific needs. 

They consider real-time detection, scalability, and adversarial settings of the defence environment for the operation of 

the robust resilience mechanism. Use of diversified datasets such as CICIDS2017, UNSW-NB15, and the KDD Cup 

1999 dataset will be used for constructing the wide and strong basis for the training and testing ADS. 

It covers ML algorithms, including supervised and unsupervised ones, such as Random Forests and Support Vector 

Machines besides K-Means clustering, and deep learning techniques that include Convolutional Neural Networks 

(CNNs) and Recurrent Neural Networks (RNNs). In addition to these developments related to accuracy and robustness, 

some hybrid models that introduce statistical methods blended with deep learning architectures are also suggested. This 

work further develops insights based on the examination conducted on log files and traffic patterns recorded by different 

sources like Kaggle, CAIDA, and open intrusion detection datasets to outline the usefulness of these approaches toward 

detecting known and unknown anomalies. These have been discussed against the intricacies involved with a defence 

communication network. 

1. INTRODUCTION 

Defence communication networks are crucial to ensuring the safe and efficient forwarding of sensitive information in 

defence operations. Defence communication networks are the backbone of modern defence strategies, which support 

real-time decision-making, coordination among military units, and information sharing across geographically dispersed 

locations in secure ways. These networks, although critical in operation, are required to provide very high levels of 

reliability and security despite adverse operational conditions, including cases where the cost of failure is extreme.  

Defence communication networks are exposed to various challenges that compromise integrity and functionality. 

Cyber attacks, whether intrusions or data breaches evolve in terms of complexity over time to target specific 

vulnerabilities in the network system. Jamming attacks entirely stop communication due to the saturation of signal 

channels. With these, hardware failures lead to unexpected downtime and loss of data. Uniqueness of defence networks 

including its limited computational resources, the need to operate in real time, hostile or adversarial environment has 

compounded the problems.  

Advanced mechanisms for detection and mitigation are required so that the vital communication networks remain secure 

and running. This anomaly detection system has been very crucial in protecting defence communication networks.  

Anomaly detection monitors the activities within the network for divergences from expected patterns, thus alerting 

possible threats or malfunctions well in advance. 

These modern ADS are being further advanced using machine and deep learning models to enhance the detection 

capabilities of ADS. The integration with such models will be discussed in light of the datasets, CICIDS2017, UNSW-

NB15, and KDD Cup 1999, which provide full network traffic logs and anomalies for training the model. This research 

study utilizes supervised learning models with structures of Random Forests and Support Vectors Machines through 

deep learning architectures along with CNNs and RNNs as well as the hybrid approach which incorporates statistical 

and deep learning techniques.  

The research study will particularly focus on the specific problems that appear in the defence communication paradigm 

by designing threefold objectives. First, it examines the critical importance of anomaly detection in defence 

communication networks and in-built difficulties in its operation. 
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2. BACKGROUND AND RELATED WORK 

Background and Related Work  Anomaly detection in networks has long been a topic of research motivated by the need 

for secure and reliable data transmission. Traditional anomaly detection methods were mainly rule and signature-based. 

Some of these methods include intrusion detection systems, such as Snort and Bro, which are focused around pre-learned 

patterns of known attacks. While capable of detecting threats already known, the approaches above fail to discover new 

or changing anomalies, thus continuing to leave networks exposed to advanced adversarial attacks. Statistical methods- 

change-point detection, threshold-based analysis-did present an alternative that identified anomalies in network metrics 

by detecting deviation patterns. However, these methods often were not adaptive and relied on human setup, which 

allowed for a high false positive rate in dynamic scenarios like that of defence communication networks. Recently, this 

field has shifted its focus toward machine learning-based and deep learning-based anomaly detection systems. 

Supervised ML models, such as Support Vector Machines and Random Forests, use labelled datasets to classify network 

behaviours as normal versus anomalous. Unsupervised methods like K-Means clustering and autoencoders are highly 

useful in situations where labelled data is scarce. However, deep learning models, especially the CNNs and RNNs, have 

recently proven very effective in highly accurate pattern identification for large-scale network traffic analysis, along 

with detecting complexities and anomalies. Hybrid approaches combining statistical methods, ML, and deep learning 

will further improve detection capabilities by incorporating domain-specific knowledge with insights into data-driven 

findings. However, such tremendous effort still pinpoints significant gaps in defence communication networks. Many 

existing anomaly detection techniques are designed for general-purpose networks and do not actually take into account 

all of the heavy demands of a defence environment, such as real-time detection, minimal computational overhead, and 

resistance against adversarial manipulation. 

Challenges in defence communication networks 

Defence communication networks operate in a class of constraints that are quite different from any civilian or 

commercial network. Such systems are designed to work correctly in high-stakes situations in which reliability and 

security are paramount. 

One of the significant challenges that such networks pose is their need to identify anomalies in real-time since even a 

little delay in detecting and responding to these threats might have catastrophic effects on mission-critical operations. 

Moreover, the networks involved are generally resource-constrained, since they typically have much lower bandwidth 

and computational power as well as energy resources in remote or mobile deployments. The biggest challenge in creating 

defence communication networks is the handling of operational limitations with robust detection mechanisms. The 

threat landscape for defence networks is very complex and is continually evolving. 

Cyber intrusions continue to be a predominant concern, with attackers now deploying advanced tactics to infiltrate 

systems, extract sensitive data, or disrupt operations. Jamming attacks intended to simply flood the communications 

channels with interference can break the network's ability to pass on information in real time. Hardware failure, caused 

either by physical damage, environmental causes, or aged components, also stops communication without any warning. 

All these threats get worse because of the adversarial nature of defence environments, where attackers specifically target 

system weaknesses.  

To fight these challenges, advanced and adaptive anomaly detection techniques are much needed. Traditional methods 

fail when applied to a defence context where network behaviours have proven to be highly dynamic and less predictable. 

Modern solutions based on adaptive technologies, such as machine learning and hybrid detection frameworks that learn 

to recognize patterns from evolving phenomena and identify new threats, are desperately needed.  

Another aspect of these systems should be their ability to work within the limitations of defence networks with 

efficiency; they should continue to be effective in detection and mitigation of threats without overloading available 

resources. Integration of such sophisticated detection techniques is critically important in order to improve the resilience 

and reliability of defence communication networks when such threats grow ever larger. 

Anomaly Detection Techniques in Defence Communication 

Advanced techniques tailored to the kind of threats expected in high-stakes environments are necessary for anomaly 

detection in defence communication networks. 

They have to be able to find a proper balance between accuracy, speed, and resource efficiency to guarantee robust 

protection against both known and emerging threats. The following sections explore some of the key methodologies-

broadly classified into statistical approaches, machine learning techniques, and hybrid frameworks, and highlight their 

relevance and adaptability in defence scenarios. 
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3. STATISTICAL METHODS 

Statistical anomaly detection methods detect behaviours that deviate from normal network behaviour. Among them, 

**change-point detection** is precisely the method that can identify abrupt changes in the activity of the network. For 

example, it can pinpoint sudden surges of high volumes of traffic incoming into a network that might represent some 

form of DDoS attack, and by analysing time-series data through statistical models, it can quickly flag the anomalies. 

Similarly, **covariance matrix analysis** examines the correlations of different network metrics with packet size and 

transmission delay to reveal odd patterns that would be associated with intrusions or hardware malfunctions. 

Machine Learning Approaches 

Machine learning techniques have greatly changed the pattern of anomaly detection by allowing models to learn patterns 

from data. 

1. Supervised Learning 

The most common supervised learning models include Support Vector Machines and Random Forests. These models 

use labelled datasets to distinguish between normal and anomalous network behaviours. For example, datasets such as 

CICIDS2017 and UNSW-NB15 contain rich labels of different types of attacks which these models can make 

significantly accurate detection in known threats. However, supervised models are data-dependent and suffer from a 

limitation that it requires labels, which would be challenging to detect novel or previously unseen anomalies; this is a 

significant flaw in defence networks where threat vectors are always changing 

2.Unsupervised learning 

K-Means clustering and autoencoders are algorithms that use unsupervised learning in order to determine anomalies 

compared to the norm in the network without preexisting labels. Such techniques are crucial for defence communication 

networks because labelling each of the potential types of anomalies is hard to do in advance. The attacks are diverse, 

and rather unpredictable. For instance, autoencoders can capture normal network traffic and flag instances of anomalies. 

Scalability is a significant advantage of using autoencoders in real-time monitoring. 3. Semi-Supervised and Federated 

Learning   Semi-supervised learning bridges the gap between supervised and unsupervised methods by using small 

portions of labelled data with substantially larger amounts of unlabelled data. 

3. Semi-Supervised and Federated Learning 

Federated learning also presents a decentralized framework for detecting anomalies by allowing several nodes within a 

defence network to collaboratively train a shared model without exchanging raw data. This guarantees data privacy and 

security in defence environments while detecting attacks that could be distributed, either as botnets or coordinated 

intrusions. Defence communication networks can make use of statistical methods-lightweight and resource-efficient-

detecting along with the adaptability of machine learning and federated approaches to deploy a robust adaptive 

framework for anomaly detection. Techniques, individually as well as in hybrid configurations, play a vital role in filling 

the ever-changing threat landscape in military communication infrastructures. 

Proposed Improvements or Solutions 

Based on the challenges of dealing with anomaly detection in the network of defence communication, this research 

offers various new and improved techniques based on the continuing progress in machine learning, deep learning, and 

hybrid models. The novelty with such improvements relates to effectiveness in terms of accuracy detection, minimizing 

false positives, and optimal use of resources in real-time settings and limited resource scenarios. 

One of the significant enhancements is the utilization of **hybrid detection frameworks**, adding statistical methods 

to machine learning and deep learning algorithms in incorporating feature extraction via PCA or SVD, in the name of 

powerful classifiers such as Convolutional Neural Networks and Recurrent Neural Networks for capturing both temporal 

and spatial anomalies in defence communication data. This layered approach provides a robust anomaly detection 

framework by merging the strengths of both classical and modern methodologies. Another proposed solution is the 

integration of **federated learning (FL)**, enabling decentralized anomaly detection across multiple defence nodes 

while preserving data privacy. 

Because defence communication networks are rather sensitive in nature, FL ensures that raw data remains localized, 

with only the model parameters being shared. The decentralized method resists data breach threats while creating an 

opportunity for a distributed anomaly detection approach responding to both global and local threats. The FL can also 

tackle the defence network data's nature as not IID and maintain the efficacy of models across various environments. 

Optimized feature selection methods will also be of utmost importance in improving detection performance and 

accounting for computational constraints. Techniques like Recursive Feature Elimination (RFE), mutual information-

based selection, and autoencoder-based dimensionality reduction can identify the most significant features from large 

datasets. These methods decrease the number of computations on resource-constrained devices while being able to pick 
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out complex patterns reflective of anomalies. Of course, last but not the least would be the adaptive algorithm to use 

online learning and reinforcement learning so that the response of detection systems can be maximized. 

Such algorithms can continue to adapt to evolving network behaviours and adversarial tactics so that the anomaly 

detection system is always strong versus unknown threats. 

Integration of these developed techniques is expected to help the proposed solution build up an anomaly detection 

framework well suited to the stringent requirements of defence communication networks, which ensures these networks' 

increasing resilience and reliability in meeting these changing challenges. 

Evaluation and Case Studies 

Efficacy Validation of the proposed anomaly detection techniques for defence communication networks demands 

rigorous evaluation. It is of prime importance that diverse datasets be utilized, and performance metrics be applied 

appropriately to the case study or simulation of demonstrating practical applicability in defence scenarios. 

Datasets Used for Testing 

A variety of datasets have been utilized to train and evaluate the anomaly detection models, ensuring their adaptability 

and robustness in identifying anomalies in defence communication networks: 

1 CICIDS2017: Realistic dataset containing a mix of normal and attacks in network traffic which contains brute force, 

DoS, and intrusion attempts so that anomaly detection models could be properly evaluated. 

2 UNSW-NB15: This is a relatively new intrusion detection dataset, containing modern threats, botnets, worms, and 

exploits. Depending on the sophistication of the attacks, this dataset is a good fit for defence networks. 

3 KDD Cup 1999: This is one of the more dated datasets but will provide a good baseline for testing an anomaly-based 

detection system against traditional network attacks. 

4 Synthetic and Simulated Logs: For the purpose of tailored datasets, mimicking properties of uniqueness specific to 

defence communication networks, like encryption on the traffic, jamming scenarios, and resource-constrained 

environments; these will enable testing under certain defence constraints. 

Evaluation Metrics 

The performance of the proposed models is measured in terms of key parameters to meet the stringent requirements 

present in defence applications: 

1. Detection Rate (True Positive Rate): This deals with the ability of the model in detecting anomalous events, hence 

high on sensitivity to threats. 

2 False Positive Rate: Concerns ability of the model in keeping false alarms at its minimum levels, which is very 

important to defence networks due to disruption associated . 

3 Precision and F1-score: Measures trade-offs between precision or correct positive predictions and recall that it provides 

an overall performance of the model. 

4 Computational Efficiency: Calculates the use of resources such as time used in processing, memory consumption, and 

energy consumed in the system. Therefore the system performs well in resource-constraint scenarios. 

5 Robustness: Since real-world attack is adversary in nature and noisy inputs are quite significant to the defence 

application, this determines whether the system is strong to survive the attack or not. 

Case Studies and Hypothetical Scenarios 

Several case studies and scenarios are presented to demonstrate the practical application of the proposed anomaly 

detection framework in defence communication networks: 

1. jamming Attack Detection: Using the CICIDS2017 dataset, models are evaluated on their ability to detect disruptions 

in communication channels caused by signal interference. This scenario replicates real-world jamming attacks, testing 

the system’s ability to identify anomalies in real-time. 

2. Encrypted Traffic Detection. Models are tested in the context of synthetic datasets over encrypted network traffic, 

thereby checking whether the anomaly detection without plaintext access  holds good for a defence system. 

3. Multi-Node Intrusion Detection with Federated Learning. Models federated among the nodes of an experimental 

defence network to determine if such a system can detect distributed attacks like botnets with preserving data privacy. 

4. Hardware Failure Simulation: Scenarios where a device fails abruptly or the signal is lost are exercised to challenge 

the model's ability to distinguish from rather benign hardware failures and even sabotage attempts. These experiments 

prove the merit of the proposed framework across various defence scenarios with an appropriate balance between the 

detection accuracy and computational efficiency. The lessons learned from such case studies and metrics are surely the 

foundation for actually implementing anomaly detection systems in real-world defence communication networks. 
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Comparison with the Existing Methods Competition  

Compared to other existing methods, this anomaly detection framework for defence communication network has far 

improved performance based on addressing flaws in earlier approaches and tailoring adaptations to the sophisticated 

application of novel machine learning techniques as well as hybrid techniques tailored for defence domain demands. 

Rule-based and signature-based traditional systems follow a predefined attack signature, and statistical approaches 

might be computationally efficient but cannot present the desired adaptability to deal with the dynamic and unpredictable 

nature of defence communication traffic. On the other hand, ML models, namely supervised, unsupervised, and semi-

supervised learning, can boost the ability of anomalous patterns, including both known and unknown. 

The supervised models are quite good at identifying the exact pattern of attack given that these have been trained on 

datasets like CICIDS2017 and UNSW-NB15. In contrast, unsupervised methods, such as autoencoders, give flexibility 

and the liberty of not requiring large labelled datasets, which is pretty important in environments where data labelling 

is impossible or not viable. Additional federated learning models that can address privacy concerns are through their 

functionalities in having distributed detection without the sensitive data needing to be centralized, thereby these methods 

are properly applied in applications in defence. One of the main trade-offs in these methods is detection accuracy with 

regard to the computational cost. For instance, deep models like CNN and RNNs demonstrate high accuracy in the 

classification of different patterns but require appreciable computer strength and seem to become problematic when in 

low-resource defence networks.Nevertheless, the statistical methods, along with some lightweight ML models like 

Random Forest and SVM, consume minimal resources with faster execution but at the expense of sacrificing some 

amount of precision and adaptability. In this sense, a trade-off between these approaches is proposed in the study 

presented herein, balancing the statistical efficiency of the algorithm with the adaptability of ML, with the high detection 

accuracy and resource efficiency guaranteed. Finally, employing optimized feature selection techniques like PCA and 

SVD further enhances the computation of efficiency in the proposed system. These methods reduce data in dimensions 

along with focusing on critical features only for detection while further minimizing the processing overhead. Addressing 

these limitations and tailoring solutions toward defence communication networks enable this framework to provide a 

much more robust, scalable, and adaptive solution in safeguarding mission-critical systems against evolving threats. 

Applications and Implementation 

The design of anomaly detection system deploying tactics in defence communication networks calls for careful 

designing on operational and security needs in military settings. The integration of the ADSs is very critical in these 

systems as they are one form of shield that covers a wide scope of potential intrusions, jamming, and hardware failure 

into the communication network. Proper deployment strategies ensure that the anomaly detection mechanisms are 

seamlessly incorporated into the existing defence infrastructure at the same time enhancing security and efficiency of 

operations. 

Deployment Strategies in Defence Networks 

Deploying Defence Network Strings ADS can be deployed at various layers within a defence network. These layers 

include the external layer which monitors incoming and outgoing traffic to a network to identify intrusion or unusual 

patterns of activity. In the inner layers of a defence network, ADS identifies anomalies that may represent an insider 

threat or hardware failure. Light and distributed federated learning-based ADS for mobile units or remote deployments 

make it possible to achieve real-time detection without the need for central data processing. The deployment of ADS in 

hubs or critical relay points supports continuous monitoring of all flows with high priorities - that is, the impossibility 

of such important anomalies being not detected.  

Interoperability with Existing Defence Infrastructure  

There will be interoperability between the ADS and exiting defence communication systems, thus ensuring its 

compatibility and effectiveness. Modern ADS solutions should integrate with the currently deployed firewalls, intrusion 

detection/ powers, and network management tools. This would then enable ADSs to append one more advanced layer 

of anomaly detection while using existing security layers. Furthermore, such systems can be tailored and customized 

according to the requirements of various defence networks, with the existing operations intact, as they work on the basis 

of APIs and modular architectures. Real-time alerts and automated responses can be set up according to the present 

incident response practices, therefore being processed more efficiently and promptly for threats. 

Scalability and Real-Time Operation 

Scalability is important in the defence network, especially because it stretches across large geographies and dynamic 

environments. Therefore, the ADS solution proposed must respond appropriately to various sizes of networks and 

different traffic loads-mostly from small tactical units to large military operations. Scalability Distributed detection 

models especially federated learning empower anomaly detection across the nodes without overloading central 
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resources. Features that include feature selection techniques and optimized algorithms are provided in order to reduce 

the computational requirements in scenarios of resource constraints. Real-time operation is another key feature in the 

deployment of ADS in defence networks. For effectiveness, real-time detection and response have been crucial as threats 

need to be addressed before they are too late. The proposed system used machine learning and hybrid approaches for 

the processing of network data traffic in real-time with minimal latency. Their proposed system achieves lightweight 

speed as well as in-depth deep learning analysis, one that balances both speed and accuracy, which is critical for various 

defence applications. Proposed solutions under ADS focus on strategic deployment, seamless integration, and scalable 

real-time operations and may enhance considerably the security and resilience of defence communication networks. 

These systems aptly detect and mitigate threats and meet every evolving modern military requirement for assured and 

secure communication under any circumstance. 

Future Directions and Open Problems 

This also applies to ADSs as systems to exploit the new and emerging technologies to meet the new challenges; just as 

the landscape of threats from defense communication networks continues to evolve. Further research directions for 

ADSs will depend on the emergence of new technologies such as quantum computing and advanced AI to further 

augment detection capabilities. Simultaneously, most of the open issues regarding resilience of detection systems against 

adversarial attacks will remain focused on searching for opportunities to improve these aspects. 

Integrating Emerging Technologies 

Possible future incorporation is based on the inclusion of quantum computing in anomaly detection frameworks. Such 

enormous volumes of information can be processed at unbelievable speeds, and this technique will help better analyse 

and make decisions regarding anomalies in high-traffic defence networks. For instance, quantum machine learning 

should be better suited for recognizing complex patterns or correlations within encrypted or noisy data sets-abilities 

traditional computing is not well-suited to take on in an efficient manner. This being preliminary applications of quantum 

technology in defence communications networks, the speed and accuracy at which anomalies are detected can be 

dramatically transformed. More AI development provides opportunity for performance improvement in ADS. 

Explainable AI (XAI) may further offer key enablers of transparency and interpretability of the detection system. XAI 

will allow for an explanation of why an anomaly was alerted so that the operators trust it and make quick decisions in 

the critical situations. This can further facilitate integration with reinforcement learning to learn from past incidents and 

optimized detection strategies in real time against evolving threats. Conclusion 

Addressing Adversarial Attacks 

Adversarial attacks have been successful in evading ADSs as well. In these attacks, an adversary modifies network 

traffic or data to evade detection. These attacks pose major challenges, particularly for high-stakes defence systems. For 

example, a sophisticated attacker may be able to inject minute variations of network behaviours that the system would 

miss, mimicking benign traffic that is most certainly hard to distinguish from malicious ones. To counter this, the future 

research efforts must have adversarial robust models. Methods such as adversarial training will build systems that are 

more resistant to attacks through the presentation of such detection systems with adversarial examples during their 

training process. A further measure that can prevent an attack from succeeding through all layers is through the hybrid 

methods of detection, which incorporate many methodologies: statistical methods, machine learning, and even heuristic 

approaches. Another open challenge exists in the scalability of adversarial defenses to be achieved with zero degradation 

of real-time performance. Although techniques like GANs are capable of realistically simulating a variety of potential 

adversarial scenarios, their computational requirements can sometimes be quite demanding in resource-constrained 

networks, posing important challenges to techniques optimizing deployment in real defence networks. 

Such directions can lead to the evolution of the field in addressing currently and emerging issues for anomaly detection 

in defence communication networks. New developments in quantum computing, AI, and adversarial robustness can be 

leveraged in building adaptive, scalable, and resilient systems that may safeguard critical defence infrastructures against 

future threats. 

4. CONCLUSION  

This paper highlights the value of anomaly detection systems in security and resilience of the defence communication 

network. Defence communication networks form the back-bones for military operations in real-time coordination and 

secure information exchange. It is, however faced by a fast-emerging sophisticated threats, such as cyber intrusions, 

jamming attacks, and hardware malfunctions, which can have negative impacts on mission success. By an in-depth 

comparison of conventional and contemporary approaches, this research demonstrates the urgent requirements for state-

of-the-art adaptive and efficient anomaly detection frameworks specifically designed to meet the evolving stringent 

requirements of defence environments. Major findings from this research include the limitations of conventional 
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methods such as rule-based systems and standalone statistical method approaches, which do not evolve well towards 

the complex dynamic and adversarial nature of defence communication networks. One of the noticeable aspects is that 

it integrates ML and deep learning models like CNNs and RNNs, which improve detection accuracy and adaptability. 

Hybrid frameworks are much more robust and scalable than ADS systems in combining statistical methods with data-

driven approaches. This enables them to work effectively in real time as well as in other resource-constrained scenarios. 

Federated learning also incorporates anomaly detection across distributed nodes while preserving data security due to 

privacy concerns, ensuring system-wide collaboration. Interesting directions for revolutionizing anomaly detection in 

defence networks include the integration with quantum computing and explainable AI. These technologies promise to 

provide speed, accuracy, and interpretability for the deployment of detection systems, areas that have bigger scopes for 

advancements in adversarial robustness. Key challenges- scalability of advanced techniques that need to be enabled in 

real-time deployments and mitigating effects of adversarial attacks-will play critical roles in the continued evolution of 

ADS. Conclusion: Thus, this work provides a roadmap for developing and implementing advanced kinds of anomaly 

detection systems in response to the requirements on the stringent defence communication network. 
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