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ABSTRACT 

This paper reviews advances of the representation and rendering of 3D scenes emphasizing methodologies proposed 

by Neural Radiance Fields (NeRF) and Gaussian splatting methods. We review earlier works that established 

foundational methodologies: first, NeRF's neural-based volumetric rendering and subsequent work on Gaussian 

splatting for real-time applications. We also look further at segmentation optimization introduced with FlashSplat. 

General features, weaknesses, as well as discussion on the research gaps of these approaches will guide further 

exploration towards scalable, efficient, and dynamic rendering solutions. 
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1. INTRODUCTION 

Representation and rendering of scenes has been two major challenges in computer vision and computer graphics, 

extending into broad applications including virtual reality, augmented reality, gaming, and photorealistic content 

creation. Traditional techniques-triangle meshes and voxel-based-have been employed to achieve 3D modeling and 

rendering for many years. The problem with these methods is that they are usually manually designed, extensively 

computationally demanding, and also inaccurate, especially for complex scenes. This has transformed the face of deep 

learning, which in return has brought forth new images to represent scenes and render data with models. 

Neural Radiance Fields represent a new frontier in the field, substituting neural networks for encoding scenes as 

volumetric radiance fields. This 2020 concept was known as NeRF, first introduced by Mildenhall et al. NeRFs showed 

exceptional skill in synthesizing photorealistic novel views of static 3D scenes. NeRF optimized a design for a neural 

network which would correlate spatial coordinates and viewing directions with radiance and density values. Doing so 

achieved results previously impossible through conventional graphics pipelines. However, their success came at the cost 

of extreme computational inefficiency. Training and inference times for NeRF take unacceptable lengths of time for 

real-time applications or wide-scale deployments. Moreover, its dependence on fixed representations constrains its 

capacity to adjust to dynamic or interactive environments, thereby highlighting the necessity for more adaptable 

alternatives. 

Because of these limitations, improvements in efficiency and the applicability to a wide variety of situations have been 

proposed by alternative techniques. Gaussian splatting is one notable development, proposed by Müller et al. This 

technique differs from the paradigm of neural networks, since it represents scenes as sets of 3-D Gaussian 

distributions. Requiring only the mathematical simplicity and low-cost computations of Gaussian primitives, real-time 

performance is achieved without visual sacrifice. Gaussian splatting therefore opens the door to interactivity, with 

low-latency rendering at the core. But, similar to NeRF, however, this comes with significant challenges in scaling up 

to dynamic environments and memory usage optimization in more complex scenes. 

The second development is FlashSplat, which takes the concept of Gaussian splatting one step further through the 

integration of an efficient segmentation requirement in 3D environments. This allows for more accurate segmentation 

by aligning masks in 2D with Gaussian primitives in 3D, improving the efficiency in rendering as well as expounding 

the capabilities of Gaussian splatting by adding element concepts such as object isolation, scene editing, and mixed 

reality integration. Despite its contributions, FlashSplat's reliance on 2D data highlights the ongoing challenge of 

bridging 2D and 3D representation techniques effectively. 

This work aims to integrate the contributions of NeRF, Gaussian splatting, and FlashSplat by discussing their 

respective methods, respective relative advantages, and limitations. We describe how this body of works collectively 

accelerated the advances in the representation and rendering of 3D scenes, while pointing out research questions that 
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have to be tackled to reach fully scalable, dynamic, and efficient solutions. Through an integrated analysis of these 

methods from an integrated perspective, we hope to provide a holistic insight into the current developments and open 

up future directions in this fast-changing field. 

2. OVERVIEW OF RECENT LITERATURE 

NeRF: Environments as Neural Radiance Fields 

The work introduced by Mildenhall et al. makes a paradigm shift in the synthesis of novel views for static 3D scenes 

with the help of a fully connected neural network that encodes volumetric data as a continuous radiance field mapping 

spatial coordinates (x,y,z) and viewing directions (θ,ϕ) into density and RGB color values making NeRF to produce 

high fidelity renders with good details and physical lighting effects. 

The training process contains the optimization of network parameters by using a large dataset of 2D images captured 

from various viewpoints. The major advancement NeRF has made involves positional encoding: it captures high-

frequency details in a fine-grained and neat way by mapping input coordinates onto a higher-dimensional space. Such 

an approach actually relaxes constraints that neural networks face when trying to represent complex spatial variations. 

The several limitations this model has make the performance of NeRF hindered. However, typically hours or days are 

needed to train NeRF for a single scene because of the aforementioned reasons of a large number of ray samples 

required for optimization. Moreover, inference is slow since rendering one frame involves tracing thousands of rays 

through the radiance field and performing neural network evaluations for each sample. 

Additionally, the static nature of NeRF's representation renders it inappropriate for dynamic or interactive applications, 

thereby limiting its applicability in contexts such as real-time virtual environments or extensive reconstructions. 

3D Gaussian Splatting for Real-Time Radiance Field Rendering 

While NeRF relies on the neural network, 3D Gaussian splatting, proposed by Müller et al., represents scenes as an 

aggregation of distributions in space. As for each of the Gaussians, position, orientation, size, and colour, enable to 

efficiently model complex geometries, this enables the modelling of complex geometries and visual attributes of 

scenes. The rendering procedure now reads: project these Gaussians onto the image plane through a differentiable 

splatting methodology that integrates their contributions. 

Gaussian splatting exhibits superior computational efficiency, allowing the technique to run in real time on current 

GPUs. This efficiency is largely due to a reduced number of neural network evaluations, whose place is taken over by 

computationally efficient mathematical operations. Additionally, this approach allows for accelerated optimization by 

directly fine-tuning Gaussian primitive parameters rather than requiring training of a neural network. 

It demonstrates extreme flexibility: for instance, capabilities for real-time scene editing, interactive navigation, and 

high-quality rendering. However, it relies on fixed-number Gaussian primitives, which can create potential memory 

constraints in large or highly detailed scenes. Also, like NeRF, Gaussian splatting assumes a static presentation of the 

scene, hence reducing its applicability in dynamically changing environments. 

FlashSplat: Optimal Segmentation for Gaussian Splatting 

FlashSplat extends the Gaussian splatting framework to satisfy the desires of good and even accurate segmentation in 

the realm of 3D rendering. This method provides a new approach towards the segmentation of 3D Gaussians with the 

aid of 2D masks. Segmentation is modeled as a linear programming problem, thereby relating 2D image inputs to 3D 

Gaussians for the best possible results. 

An important benefit of the FlashSplat approach is computational efficiency. It combines the ability to 

opportunistically include segmentation in the framework of Gaussian splatting without additional demands on 

resources typically associated with post-processing or independent segmentation models that are otherwise affecting 

practical applications concerning object isolation, interactive editing, and manipulation of mixed reality scenes. 

In flashsplat, occlusions and noisy inputs are handled very robustly, so the model is very suitable for real-world 

applications. However, its dependency on a 2D mask limits its accuracy in volumetric segmentation tasks, especially 

when using 3D data that is sparse or incomplete. In future extensions, integration of 3D volumetric priors can be 

useful to further improve the accuracy and robustness achieved by the model. 

3. ANALYSIS 

These techniques studied, NeRF, 3D Gaussian splatting, and FlashSplat, represent great contributions to the field of 

three-dimensional scene representations and rendering. Each technique had significant challenges concerning 

propositions of a rather novel approach but exposed their very own shortcomings, pointing out potential further ways 

for research. NeRF presented a critical state-of-the-art in the community-demonstrating neural representations could 

achieve photorealism and beyond. Positional encoding and volumetric integration revolutionized the architecture of 
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novel view synthesis, but reliance on computationally expensive neural networks in both training and rendering limits 

its feasibility. The long training period and also not suitable for real-time applications that limit the application of 

NeRF in settings such as gaming and virtual reality. Furthermore, since NeRF produces static representations, it does 

not fit dynamic environments and this calls for models that adapt to changing situations. 

Conversely, the utilization of 3D Gaussian splatting markedly diminishes computational demands by substituting the 

neural representation with Gaussian primitives. This approach illustrates that it is feasible to attain high-quality 

renderings without the substantial resource requirements typically associated with a neural network. By facilitating 

real-time performance, Gaussian splatting has created new avenues for interactive applications, encompassing virtual 

tours, augmented reality (AR), and scenarios involving live rendering. Nevertheless, this technique presents certain 

challenges, especially in terms of memory efficiency and scalability. Representing complex scenes by a small number 

of Gaussian primitives leads to artifacts or low resolution in fine details. Also, similar to NeRF, Gaussian splatting 

relies on the static scene structure, and dynamic scene modeling is another open research problem. 

FlashSplat generalizes Gaussian splatting as a way to get efficient segmentation with the help of 2D masks and uses 

linear programming for optimal alignment between both 2D and 3D data to make the Gaussian splatting more flexible 

and useful. These capabilities to separate objects and efficiently manipulate scenes have particularly made FlashSplat 

extremely valuable for developing applications in mixed reality and for interactive scene editing. 

However, the reliance of FlashSplat on 2D inputs limits it in volumetric segmentation since boundaries have to be 

defined sharply in 3D. Hence, the algorithm could be further improved by including some kind of volumetric priors or 

using machine learning techniques for better robustness in segmentation. 

A prevalent constraint among these methodologies is their inherent static characteristic, which limits their utility in 

dynamic or extensive environments. Subsequent investigations should prioritize the creation of flexible frameworks 

that can effectively represent scenarios that change over time. Furthermore, enhancing memory efficiency and 

scalability will be essential for managing highly intricate scenes without sacrificing performance. 

It turns out that the neural representations and geometric primitives of NeRF and Gaussian splatting do have a valid 

hybrid methodology. It seems it has the opportunity to take the benefits in the implementation that each provides and 

combine the scalability and efficiency of the approach in Gaussian splatting with the expressive ability of the neural 

networks. Other imminent upgrades in hardware, such as dedicated GPUs or neural accelerators, may also ease some 

of the computational drawbacks models such as NeRF are likely to inherit. In a nutshell, NeRF-to-Gaussian splatting 

and ultimately FlashSplat signal the move towards much more practical and efficient rendering solutions. The 

challenge remains open, however-about how to come up with an even more balanced solution that takes care of all 

quality, efficiency, scalability, and adaptability. The approaches developed here are all indicative of a need for further 

innovation in unlocking 3D scene representation and rendering technologies. 

4. CONCLUSION 

A review of some of the quite recent advances in 3D scene representation and rendering has pronounced the high 

advancement made in that particular domain using methods such as NeRF, 3D Gaussian splatting, and FlashSplat. All 

these methods have contributed to the evolution of scene modeling through novel techniques for rendering high-

quality images, reducing computation overhead, and enhancing adaptability in scenes. 

However, they open up many areas that need more research and development work, particularly in regard to 

scalability and dynamic scene management and performance in real-time. NeRF is indeed a pioneering approach in 

neural scene representation that has greatly moved the existing bar for photorealistic rendering. It has brilliantly 

provided novel views with much detail and accuracy in a very efficient manner and has thus been thought of as an 

indispensable tool for various applications pertaining to computer vision and graphics. The main disadvantage of 

NeRF is that it has very heavy computational requirements, rendering it inapplicable for real-time applications or large 

dynamic environments. As such, the challenge moving forward is to preserve the high quality of NeRF rendering with 

even more efficient ways of reducing its computational cost-for example, through model optimization, compression, 

or parallel processing strategies. 

The 3D Gaussian splatting is an important advancement in this area. As scene depiction now makes use of Gaussian 

distributions, computation can be improved significantly in order to reach for real-time performance without loss of 

rendering quality. Thus, these results will open up new interactive applications in the fields of virtual and augmented 

reality. However, like NeRF, such Gaussian splatting also presents specific challenges in terms of the scene 

representation and limited memory to store a number of Gaussian primitives. This method is difficult to handle 

dynamic changes of the scene and definitely not applicable to interactive real-world environments. 
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Work in this direction should then proceed on to improving the flexibility of Gaussian splatting by bringing in 

dynamic object tracking or adaptive scene representations that make for interactive, ever-changing environments. 

FlashSplat then extends the Gaussian splatting approach by adding optimal segmentation of 3D scenes with a 2D mask. 

It unlocks tremendous opportunities in mixed reality, scene editing, as well as object recognition applications due to 

its ability to precisely segment and manipulate objects within a scene. FlashSplat's unique contribution is the 

integration of linear programming for optimal segmentation that computationally efficiently aligns 2D input with 3D 

Gaussian primitives. 

Still, as mentioned in the review, FlashSplat depends on 2D segmentation, which would not tolerate as challenging 

volumetric segmentation tasks. With that said, one assumes that integrating 3D segmentation methods, and even 

leveraging models of machine learning for-automatic segmentation, could enhance the method even more and make it 

even more robust. 

Considering such contributions, it is very apparent that though NeRF, Gaussian splatting, and FlashSplat made 

immense headways in the 3D scene representation capability, this field is actually at its pending developing step. Real-

time rendering of very minute and photorealistic 3D scenes while maintaining scale and efficiency is a great challenge. 

Perhaps the most promising direction for further work is hybrid models that combine the strengths of neural networks 

with geometric representations like Gaussian splatting. Hybrid systems hold the promise of utilizing the significant 

expressive power of neural networks to capture detailed features while geometric primitives serve to improve 

scalability and speed. Additional positive influences include continued hardware technology advancement, like the 

development of dedicated graphics processing units and neural processing units, which can reduce some of the 

computational limitations currently preventing real-time rendering capabilities. Coupling these hardware acceleration 

capabilities with advanced rendering algorithms will enable the next generation of scene representation technologies 

to be applied in a much more extensive spectrum than that provided now, which ranges from real-time games to 

complex simulations and virtual environments. In conclusion, the 3D scene representation field is revolutionizing 

rapidly with NeRF, Gaussian splatting, and FlashSplat. While these techniques have pointed towards rendering high-

quality efficient and interactive scenes, some challenges still persist in terms of scalability, dynamic adaptation toward 

the changes in the scene, and finally achieving real-time performance. Further research will thus address all these 

limitations by injecting hybrids, improving memory efficiency, and incorporating dynamic scene modelling 

techniques into it. With continuing innovations both in algorithms and hardware, the dream of real-time photorealistic 

rendering of difficult 3D scenes appears now closer than ever, so that new possibilities of wide-ranging application 

may now become possible. 

5. REFERENCES 

[1] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, Ren Ng. 

arXiv:2003.08934 

[2] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, George Drettakis. arXiv:2308.04079 

[3] Qiuhong Shen, Xingyi Yang, Xinchao Wang.  arXiv:2409.08270 

[4] Haibo Yang, Yang Chen, Yingwei Pan, Ting Yao, Zhineng Chen, Chong-Wah Ngo, Tao Mei 

arXiv:2409.07452 

[5] Zeyu Cai, Duotun Wang, Yixun Liang, Zhijing Shao, Ying-Cong Chen, Xiaohang Zhan, Zeyu Wang  

arXiv:2409.05099 

[6] Flynn, J., Broxton, M., Debevec, P., DuVall, M., Fyffe, G., Overbeck, R., Snavely, N., Tucker, R CVPR 2019 

(Deep View: view synthesis with learned gradient descent.) 

[7] Henzler, P., Mitra, N.J., Ritschel, T.CVPR 2020 (Learning a neural 3d texture space from 2d exemplars. ) 

[8] Kara-Ali Aliev, Artem Sevastopolsky, Maria Kolos, Dmitry Ulyanov, and Victor Lempitsky. ECCV 2020 

(Neural Point-Based Graphics. In Computer Vision ) 

[9] Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P. Srinivasan, and Peter Hedman. CVPR 2022 (Mip-

NeRF 360: Unbounded Anti-Aliased Neural Radiance Fields. ) 

[10] Markus Gross and Hanspeter (Eds) Pfister. Elsevier  2011 (Point-based graphics.) 

[11] Jeff P. Grossman and William J. Dally.  Rendering Techniques 1998 (Point Sample Rendering) 

[12] Peter Hedman, Pratul P. Srinivasan, Ben Mildenhall, Jonathan T. Barron, and Paul Debevec.  ICCV 2021 ( 

Baking Neural Radiance Fields for Real-Time View Synthesis.) 


