
 

www.ijprems.com 

editor@ijprems.com 

INTERNATIONAL JOURNAL OF PROGRESSIVE 

RESEARCH IN ENGINEERING MANAGEMENT 

AND SCIENCE (IJPREMS) 

(Int Peer Reviewed Journal) 

Vol. 04, Issue 12, December 2024, pp : 718-726 

e-ISSN : 

2583-1062 

Impact 

Factor : 

7.001 
 

@International Journal Of Progressive Research In Engineering Management And Science                 Page | 718 

URBAN AREA CLASSIFICATION USING REMOTE SENSING AND DEEP 

LEARNING 

G. Sowmya1 
1Department of Computer Science & Engineering GMRIT, Rajam, Andhra Pradesh, India 

ABSTRACT 

Rapid urban growth and land cover changes, driven by an expanding population, economic growth, or environmental 

challenges, require accurate and efficient monitoring methods. Remote sensing and deep learning (DL) are becoming 

important tools for monitoring land cover change, allowing us to monitor these changes more accurately. In this paper, 

High-resolution satellite imagery with DL algorithms used to classify urban areas which are important in urban planning 

and environmental management. There is additional spectral information in multi-spectral satellite imagery (including 

near-infrared (NIR) bands) that red-green-blue (RGB) images that cannot capture. NIR imagery is particularly useful 

for classification in fields like agriculture, forestry, and geology/natural resources. However, many DL methods are 

struggle to fully utilize spectral information. To overcome the drawback, this study presents an efficient model, 

Separated-Input U-Net (SiU-Net) which uses methods to independently process RGB and NIR data, which improves 

classification performance. The SiU-Net model was more accurate than DeepLabV3+ or U-Net particularly in scenarios 

with limited or imbalanced datasets. This suggests that SiU-Net may be an appropriate method to classify land cover in 

urban accretions even when the training data is limited or highly imbalanced. 

Keywords: Remote Sensing Technology, Deep Learning Algorithms, U-Net model, DeepLabV3+ model , SiU-Net 

model, red, green, and blue (RGB), near-infrared (NIR). 

1. INTRODUCTION 

The unprecedented pace of urban expansion and land cover change worldwide brings forth significant environmental, 

social, and infrastructural challenges. Rapid urbanization affects ecosystems, alters hydrological cycles, and places 

immense pressure on resources, necessitating the development of effective monitoring systems. Accurate and timely 

classification of land cover is vital for urban planning, resource management, and sustainable development. Remote 

sensing, with its ability to capture extensive areas through high-resolution satellite imagery, has become an indispensable 

tool for such tasks. However, the complexities of urban landscapes, characterized by heterogeneous textures, varied 

spatial patterns, and overlapping land use types, demand sophisticated analytical methods capable of handling this 

spectral and spatial diversity. 

Recent advances in deep learning (DL) offer promising solutions for land cover classification. Unlike traditional 

methods, which often rely on hand-crafted features and may lack adaptability to complex data, DL techniques especially 

convolutional neural networks (CNNs) can automatically extract relevant features from vast datasets. Models such as 

U-Net and DeepLabV3+ have demonstrated impressive accuracy in segmenting complex urban areas by leveraging 

CNNs for feature extraction. These models, however, encounter limitations when applied to noisy datasets or when 

handling highly imbalanced classes, as is often the case with remote sensing data. Furthermore, the rich spectral 

information available in multispectral and near-infrared (NIR) bands presents additional challenges in feature 

integration, as traditional DL models primarily process RGB imagery, potentially overlooking critical data embedded 

in other wavelengths. 

To address these challenges, this survey focuses on advanced DL models and methodologies developed for land cover 

classification, particularly in urban contexts. Key contributions of this survey include the following: 

1. Exploring the Role of Novel Architectures in Urban Land Cover Classification 

This paper provides an in-depth exploration of several DL models tailored to address urban land cover complexities, 

including U-Net, DeepLabV3+, and the newly proposed Separated-Input U-Net (SiU-Net). The SiU-Net 

architecture, with its unique dual encoder design, is particularly noteworthy for its independent processing of RGB 

and NIR channels. This separation allows SiU-Net to better capture and utilize spectral information, achieving 

improved classification accuracy over models that treat multispectral inputs as a unified data source. By comparing 

these models across varied urban datasets, this survey highlights SiU-Net’s effectiveness, especially in scenarios 

with limited labeled data or highly imbalanced classes. 

2. Comprehensive Review of Techniques Addressing Data Imbalance and Noise 

In remote sensing datasets, imbalanced classes and noisy labels are common issues due to the uneven distribution 

of urban features and the limitations of manual annotation. This paper examines dual-phase training and ensemble 

learning approaches that enhance model performance by prioritizing minority classes. Additionally, techniques like 
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pseudo-labeling—a method that refines labels by iteratively updating predictions—are discussed as effective 

strategies to mitigate the impact of noisy or low-resolution data. By surveying these approaches, this paper identifies 

methods that not only improve model performance but also increase generalizability across different urban 

landscapes. 

3. Analysis of Multi-Source and Multi-Scale Feature Fusion for Enhanced Classification 

Urban environments exhibit complex spatial and spectral features that benefit from multi-source data integration. 

This survey covers models that leverage both spatial and spectral data, such as RGB and NIR bands, and techniques 

that fuse information across scales to enhance classification precision. Methods like multiscale context-aware 

feature fusion and dual encoder-decoder structures are reviewed for their effectiveness in integrating detailed local 

and broader contextual information, thereby capturing both fine-grained and large-scale patterns within urban 

scenes. 

4. Evaluation of Interpretability and Scalability in DL-based Remote Sensing Models 

As DL models become increasingly complex, their interpretability and computational demands grow. This paper 

reviews methods, such as the Shapley additive explanations (SHAP) framework, that provide interpretability by 

quantifying the contribution of different spectral bands to model predictions. The survey also highlights scalable 

DL architectures, such as efficient encoder-decoder models, that maintain high accuracy while reducing 

computational costs. This focus on interpretability and scalability is essential for operational applications in urban 

planning and environmental monitoring, where models need to be both reliable and resource-efficient. 

5. Recommendations for Future Research Directions 

In synthesizing the current advancements, this survey identifies key research gaps and proposes future directions. 

These include enhancing model robustness in highly noisy environments, exploring novel domain adaptation 

techniques to generalize models across diverse urban settings, and further developing real-time processing 

capabilities for timely decision-making in fast-evolving urban landscapes. 

Contribution 

This survey contributes to the field by providing a comprehensive overview of state-of-the-art DL techniques in land 

cover classification with a focus on urban applications. It synthesizes advancements in model architectures, training 

strategies, data augmentation, and feature fusion that collectively address the challenges posed by noisy, imbalanced, 

and multi-spectral urban datasets. By detailing the performance and limitations of these methods, this survey serves as 

a resource for researchers and practitioners seeking to apply DL for remote sensing in urban planning, environmental 

monitoring, and sustainable development. 

In summary, this survey underscores the transformative potential of deep learning in land cover classification and paves 

the way for innovative solutions that are accurate, scalable, and adaptable to the demands of real-world urban monitoring 

applications. 
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Requires 
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usage. 
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Cover 

Mapping 
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data for 
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Scalable to 
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84% of F1-

score. 

 

 

 

 

 

Scalability, 

computationa

l efficiency, 

generalizatio

n to other 

datasets. 

2. METHODOLOGIES 

A. Dataset Preparation 

The study utilized the 2020 satellite-derived land cover dataset, consisting of RGB and NIR bands obtained from 

Sentinel-2 images. Each input image had a spatial resolution of 10 meters and was segmented into 512×512 pixel tiles. 

The dataset covered six land cover classes: building, road, paddy field, upland field, forest, and unclassified areas. A 

total of 300 image patches were divided into training (64%, 192 patches), validation (16%, 48 patches), and testing 

(20%, 60 patches) sets, with no overlap. The dataset exhibited a significant class imbalance, with forest and unclassified 

areas dominating the distribution. 

B. Model Architectures 

The study compared three models: U-Net, DeepLabV3+, and a proposed Separated-Input-Based U-Net (SiU-Net). U-

Net employed a symmetrical encoder-decoder architecture with skip connections to preserve edge information. 

DeepLabV3+ incorporated a ResNet-50 backbone and atrous spatial pyramid pooling (ASPP) for multi-scale feature 

extraction. The SiU-Net was designed to process RGB and NIR bands independently using dual encoders, enhancing 

the extraction of spectral features. Correlation coefficients between bands guided the decision to separate inputs, 

optimizing spectral differentiation while preserving edge details and improving class-specific performance, particularly 

for underrepresented classes. 

 

Fig 1:SiU-Net model Architecture 
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C. Training and Optimization 

The models were trained using hyperparameters optimized for their architectures. The Normal initialization was used 

for all models. Cross-entropy loss was adopted as the loss function, and different optimizers were employed: Adam with 

a learning rate of 0.0001 for U-Net and SiU-Net, and NAdam with a learning rate of 0.00001 for DeepLabV3+. All 

models were trained from scratch for 800 epochs, with the best-performing epoch selected based on validation accuracy. 

No additional data balancing or augmentation techniques were applied during training. 

D. Performance Evaluation 

To evaluate model performance, metrics such as pixel accuracy, precision, recall, and F1 score were calculated. The F1 

score, a harmonic mean of precision and recall, was used to address class imbalance. Precision-recall curves and average 

precision (AP) scores were computed to assess the models' ability to classify each class and preserve boundaries. Both 

qualitative and quantitative comparisons were conducted to evaluate the baseline models and SiU-Net, with a particular 

focus on underrepresented classes such as upland fields. 

E. Experimental Setup 

The experiments were conducted in a GPU-enabled computational environment to manage the high computational 

demands of training deep learning models. The models' architectures were compared visually by examining semantic 

segmentation maps to assess their ability to preserve edges and recover class boundaries. Misclassifications and recovery 

of underrepresented classes were analyzed to determine the models' effectiveness. 

F. Post-Processing and Analysis 

Correlation coefficients between RGB and NIR bands were analyzed to validate the design of SiU-Net's dual encoder 

architecture. Statistical analyses were conducted to understand false positives and negatives, especially in misclassified 

classes. Trends in performance were evaluated to study the impact of class imbalance and the effectiveness of SiU-Net 

in improving classification for low-proportion classes. The study highlighted SiU-Net's ability to reduce data imbalance 

issues and achieve stable performance across classes. 

3. RESULTS AND DISCUSSIONS 

The literature on land cover classification using deep learning and remote sensing highlights advancements in model 

architectures to address data limitations, imbalance, and classification precision. Models like U-Net, DeepLabV3+, and 

SiU-Net have demonstrated improved accuracy in segmenting complex urban areas by leveraging high-resolution multi-

spectral data, including near-infrared (NIR) bands, which capture details beyond standard RGB imagery. The SiU-Net 

model, with its dual encoder structure for processing RGB and NIR inputs independently, showed enhanced 

performance, especially with imbalanced data, outperforming more traditional architectures in scenarios with sparse 

labeled datasets. 

Additional methodologies introduced in the literature employ approaches like dual-phase training to prioritize minority 

classes and feature fusion modules to balance local and global information for higher noise resilience. Techniques such 

as pseudo-labeling and multiscale feature fusion are also applied to improve label quality and model performance, even 

in noisy or low-resolution datasets. Overall, these approaches collectively enhance classification accuracy, model 

robustness, and scalability across varied urban landscapes, addressing both spectral complexity and data quality issues 

effectively. 

 

Fig 2: Result chart 
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4. CONCLUSION 

The adoption of advanced deep learning models such as U-Net, DeepLabV3+, and the novel Separated-Input-Based U-

Net (SiU-Net) has significantly enhanced land cover classification using multispectral satellite data. By leveraging the 

spectral richness of RGB and NIR bands, these models have overcome several limitations of traditional methods, 

particularly in handling class imbalance and low-resolution datasets. Among them, SiU-Net demonstrated superior 

performance by independently processing spectral bands, preserving spatial and spectral information, and achieving 

higher classification accuracy across diverse land cover types. These advancements underline the potential of deep 

learning to support critical applications in urban planning, environmental monitoring, and resource management. 

Challenges: A significant challenge in land cover classification is the issue of data imbalance, where certain classes, 

such as forests, dominate the dataset while others, like urban structures or upland fields, are underrepresented. This 

imbalance often leads to biased models that perform well for majority classes but struggle with minority ones. 

Additionally, the computational cost of advanced models like SiU-Net is another concern, as its dual-encoder 

architecture requires extensive processing power, making it unsuitable for real-time applications or resource-constrained 

environments. 

Another critical challenge lies in fully leveraging the spectral and spatial richness of multispectral data, including NIR 

bands. Traditional deep learning approaches often mix spectral features, leading to the loss of critical information 

required for precise classification. Moreover, noisy labels and low-resolution satellite data further exacerbate these 

issues, as inaccuracies in annotations and limitations in image quality make it harder for models to achieve consistent 

and accurate results. Finally, the generalizability of models remains a hurdle, as they may perform well on specific 

datasets but struggle when applied to different regions, seasons, or data sources due to variability in spectral and spatial 

characteristics. 

Future Directions: Future advancements in land cover classification can address these challenges through several 

innovative approaches. Enhanced data augmentation techniques tailored specifically for multispectral imagery could 

mitigate class imbalance by enriching training datasets and improving model robustness. Lightweight architectures are 

also a promising direction, aiming to reduce computational overhead while maintaining high classification accuracy, 

which is crucial for real-time applications. 

Domain adaptation and transfer learning methods could improve model generalizability by enabling them to perform 

effectively across diverse datasets and geographic regions. Additionally, the integration of explainable AI frameworks, 

such as SHAP (Shapley Additive Explanations), can enhance the transparency of model predictions, fostering trust and 

better decision-making. 

Developing quantitative metrics for dynamically determining the separation of input bands in multi-spectral data could 

optimize encoder design, ensuring better utilization of spectral features. Incorporating ancillary data sources like LiDAR, 

socio-economic indicators, or temporal sequences could further enhance classification accuracy and provide richer 

contextual insights. Finally, automation in annotation processes and scalable cloud-based solutions can address the 

challenges of noisy labels and large-scale data processing, paving the way for broader and more effective applications 

of deep learning in remote sensing. 
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