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ABSTRACT 

Proposed paper introduces a novel edge-adaptive image restoration method utilizing a Non-Symmetry and Anti-

Packing Deep Learning Model (NADLM). The proposed approach is highly effective for processing localized image 

regions containing objects at varying depths. Experimental results demonstrate that the method outperforms several 

state-of-the-art techniques, achieving superior outcomes with faster execution times. Owing to its high speed and 

excellent visual enhancement capabilities, the proposed method is well-suited for real-time applications. The NADLM 

effectively groups pixels by leveraging the target pixel for restoration, estimating the enhanced image from the 

original based on an observation model. Simulations conducted using MATLAB show that the proposed method 

produces images with higher visual quality, improved PSNR, and faster computational performance compared to 

conventional approaches. Motion-free k-space datasets were utilized for training, and simulations were conducted 

using MATLAB. 

Keywords: Image Reconstruction, Deep Learning, Convolutional Neural Network, Non-symmetry, Anti-packing, 

Machine Learning 

1. INTRODUCTION 

Proposed work presents a deep learning architecture for image restoration that delivers statistically significant 

improvements over traditional algorithms in Poisson image de-noising, particularly under strong noise conditions. 

Poisson noise, commonly encountered in low-light and photon-limited settings, is accurately modelled by the Poisson 

distribution. Traditionally, this type of noise has been prevalent in niche fields such as astronomical imaging. 

However, with the widespread use of surveillance cameras operating in low-light environments and mobile phones 

producing noisy night scene images due to lower-grade sensors, the demand for advanced Poisson de-noising 

algorithms has surged. 

Deep learning, which has demonstrated remarkable success in imaging tasks such as segmentation and recognition, is 

leveraged in this study to develop a novel de-noising network. This network outperforms traditional algorithms in 

Poisson de-noising, particularly under challenging noise conditions. The proposed architecture integrates 

convolutional and deconvolutional layers with symmetric connections to enhance performance. Experimental results 

reveal that the network achieves average PSNR gains of 0.38dB, 0.68dB, and 1.04dB over benchmark traditional 

algorithms at image peak values of 4, 2, and 1, respectively. Additionally, the network operates with reduced 

computational time while maintaining superior performance, facilitated by optimized reconstruction stride sizes. 

Table 1 Literature Summary 

Author/ Journal/Year Method Outcome 

WIESLAW 

CITKO/IEEE/2023 

Machine Learning: An Inverse Problem 

Approach 

50 × 56 pixels grey image, 0.154 

MSE with regularisation = 0.002 

Veronika 

Spieker/IEEE/2024 

Comprehensive Review learning-based 

motion correction 

NA 

Hailong He/IEEE/2024 Deep Learning RSOM Analysis Pipeline 

(DeepRAP) 

0.034 Average Mean Value 

Difference for 333 × 550 Gray image 

SAIPRASAD 

RAVISHANKAR/ 

IEEE/2019 

Sparsity to Data-Adaptive Methods and 

Machine Learning 

Average PSNR achieve is 21.67 dB 

2. PROPOSED MEHODOLOGY 

Table 2 demonstrates that this work introduces a novel combination of a Convolutional Neural Network-based filter, 

an Anti-Packing filter, and Non-Symmetry Lucy-Richardson Algorithm techniques. This combination delivers 

superior noise filtering capabilities and significantly enhances overall filtering performance for various noise types. 
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Table-2. Comparison table of restoration methods 

Techniques Salt-pepper 

noise 

Gaussian 

noise 

Uniform noise Poisson 

Noise 

Direct Inverse Filter No No No Yes 

Convolutional Neural Network base Filter Yes Yes No Yes 

Constrained least-Square Filter - - - Yes 

Anti packing Filter Yes No Yes Yes 

Geometric Mean Filter Yes Yes No No 

Harmonic Mean Filter Salt-Yes, Pepper-

No 

Yes No No 

Median Filter Yes No No - 

Wiener Filter Yes Yes No Yes 

Non symmetry Lucy- Richardson 

Algorithm Techniques 

No Yes Yes Yes 

Adaptive Mean Filter Yes No No No 

This thesis proposes a novel Non-Symmetry and Anti-Packing Deep Learning Model (NADLM), specifically 

designed for effective Poisson image de-noising. The methodology integrates advanced deep learning techniques and 

architectural innovations to address challenges posed by noisy images, particularly in low-light and photon-limited 

settings. The major components of this methodology are detailed as follows: 

2.1 Development of NADLM for Poisson De-Noising: - The NADLM combines two key design elements commonly 

found in modern neural networks: Convolutional Auto-Encoders and Symmetric Connections, which together enhance 

the model's ability to de-noise images effectively. 

Convolutional Auto-Encoders: Auto-encoders are widely recognized for their ability to compress input data into 

compact representations using a bottleneck design. This compression discards irrelevant information, such as noise, 

while retaining essential image features. The convolutional variant of auto-encoders is particularly well-suited for 

image data as it applies convolutional filters to extract spatial features from the input. These compact representations 

serve as noise-resistant versions of the original data, enabling the model to effectively isolate and remove noise while 

preserving key details. 

Symmetric Connections: Symmetric connections are introduced between corresponding encoder and decoder layers 

to address the loss of detail that often occurs during compression. 

These connections act as a feedback mechanism, reminding the decoder of crucial image details forgotten during the 

encoding process. Additionally, they improve gradient flow during backpropagation, allowing for more efficient 

training and better convergence of the network. 

2.2 Branching Architecture with Variable Depth: - To achieve a balance between smoothing noise and preserving 

image details, the NADLM incorporates a branching structure with varying depths of convolutional auto-encoders. 

Deeper Branches: These branches are designed to perform aggressive noise reduction by smoothing color 

fluctuations. However, they may sacrifice finer details of the image, making them suitable for scenarios where color 

uniformity is prioritized over intricate texture retention. 

Shallower Branches: These branches focus on preserving detailed textures and structures within the image. They 

perform basic de-noising operations, complementing the deeper branches to deliver a holistic restoration outcome. By 

combining multiple branches, the network learns to optimize for both tasks—color smoothing from deeper branches 

and detail preservation from shallower ones—thereby achieving superior overall performance. 
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Figure 1 Flow diagram of proposed work 

2.3. Network Design and Workflow: The architecture of NADLM is visualized in Figure 2, where key components 

and their interactions are clearly illustrated. Components of the Network: 

• "Conv" Layers: Convolutional layers that perform feature extraction and compression. 

• "Deconv" Layers: Deconvolutional layers that reconstruct the compressed features into enhanced images. 

• Connections: Symmetric connections between corresponding encoder and decoder layers that aid in preserving 

image details. 

• 3D Blocks: Represent input or output tensors at different stages of the network. 

• Branch Structure: Each branch consists of two main components: 

o A compressor built using convolutional layers. 

o A decompressor built using deconvolutional layers. 

• Input and Output: A noisy image patch of size 64×64x64 times is fed into the network as input. The 

corresponding clean patch of the same size is used as the ground truth to guide the network in learning the 

mapping from noisy to clean images. 

• Operation in a Single Branch: 

o The first convolutional layer compresses the noisy input into 32×32x32 smaller feature maps. 

o The second convolutional layer further reduces these feature maps to 16×16x16. 

o The deconvolutional layers then reverse this compression to reconstruct the original 64×64x64 patch, retaining 

essential features while removing noise. 

2.4. Noise Suppression Mechanism: - The convolutional layers compress the input by discarding less significant 

components such as noise while retaining representative features. The deconvolutional layers then reconstruct the 

image, ensuring that: 

• Noise is effectively removed during the compression stage. 

• Image details are preserved and reconstruct d during the reconstruction stage. 

• This combination of compression and decompression ensures that the NADLM achieves superior de-noising 

performance across a range of noise levels. 
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Figure 2. Visualization of the proposed deep learning Model (DLM). 

This figure illustrates the deep learning architecture proposed in this paper. This network contains 2 branches. The 

lower branch contains 3 convolutional layers appended by 3 deconvolutional layers, and the upper branch contains 2 

convolutional layers appended by 2 deconvolutional layers. 

3. PROPOSED ALGORITHM 

The image re-construction performed by generating a HDR image by using following processing step as shown in 

following flowchart. 

Image Acquisition: In this step Images are introduced in MATLAB for further processing. Here we take 16 various 

intensity images with various exposure time as an image input sequence. 

Edge Extraction Using Canny Operator: The image edges are extracted to preserve image basic structure to 

maintain image quality. for this edge detection & preservation Canny operator is used. 

Respective Light Intensity Extraction:  Irradiance estimation from a set of NE differently exposed intensity images 

Z1, Z2. . .ZNE. To each input image Zi, associated TSF Ki, i= 1, 2 . . . NE is calculated correspondingly. irradiance 

image map Bi corresponding to observation Ziis given by Bi = f−1(Zi)/Δti, where Δti, is exposure time of observation 

[2]. Simultaneous re-construction & extraction of latent HDR irradiance image may be posed as an optimization 

problem where solution may be obtained by minimizing cost. 
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Here, E denotes latent irradiance image while Ki is reconstruction matrix of ith exposure that represents space variant 

reconstruction operation. rows of Ki are local blur filters acting on pixel els of E to yield blurred irradiance image B i. 

pixel el intensity value in an image is a monotonic however nonlinear function of irradiance & exposure period. light 

energy accumulated is given by 
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Where E is irradiance, t is exposure time, & n is additive noise. A series of specialized algorithms alter collected 

data in real-time to map irradiance values to final image intensities. 

Image Alignment: This approach is used to align various LDR exposures prior to merging them into final HDR 

image. 

Select Sample pixel el Nodes: We have considered blind estimation techniques [8] (multi-channel) to estimate PSFs.   

We estimate pN different PSFs of a blurred frame corresponding to local irradiance image patches
k

pjB where pj  

refers to location of patch ( j= 1, 2, . . . Np), & k is index of frame. At a location PSFs of two selected frames (n = 1, 2) 

are derived by minimizing following energy function 
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Figure 3 Flow of Lucy Richardson method in Proposed Design 

Where
TV and k are regularization parameters, pjE  is estimated latent scene irradiance patch at pj  quantities

1

pjh and

2

pjh  are estimated PSFs at location pj corresponding to blurred irradiance patches
1

pjB  and
2

pjB  in two selected 

observations. Following above procedure, pN different PSFs are estimated for each of blurred frames. PSFs that we 

estimate using equation (1.3), though locally accurate, might not be in mutual alignment with respect to PSFs 

estimated at other locations. If we attempt to use these PSFs directly in TSF estimation procedure, then TSF thus 

estimated will be erroneous. true TSFs cannot be estimated without compensating for shifts among underlying PSFs. 

To alleviate this problem, we (randomly) choose one of PSFs as reference & align other PSFs with respect to it. If

2222 .....,,
321 pNpppp hhhh are PSFs of first frame, we choose one of PSFs (say

1

refph ) as reference. TSF 
1

Th is estimated 

by searching over all possible shifts of PSFs 
1

1ph to
1

pNph . That 
1

Th which minimizes error 

2

1

11
=

−
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l

N

l

Tlp hMh is 

chosen to be correct one. Note that as a shifted PSF may have correspondingly shifted latent image, many possible 

solutions for TSF with correspondingly warped latent images may exist. Hence, solution (TSF) obtained by our 

procedure will correspond to one of warped instances. 

4. RESULT & DISCUSSION 

Simulations were performed using MATLAB, leveraging motion-free k-space datasets for training. These datasets 

provide high-quality ground truths for evaluating the network's performance. 

The simulation results are analysed based on several performance parameters, including Mean Squared Error (MSE), 

noise variance (σ^2), and Signal-to-Noise Ratio (SNR), which are key metrics associated with the proposed algorithm. 

A motion-free k-space dataset has been utilized for training and testing the images. 

 

Figure 4 cameraman image and its histogram 
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Figure 5: Reconstructed Cameraman Image 

The performance of the restoration technique has been validated across multiple images, with results presented for 

five representative cases. One of the test cases in motion-free k-space datasets is "Cameraman" image. Figure 4 

illustrates the original "Cameraman" image along with its histograms for the red, green, and blue colour channels. The 

histogram analysis aids in equalizing the image, enhancing its visual quality and contrast. Figure 5 showcases the 

proposed reconstruct d "Cameraman" image, which represents the final output after applying the complete image 

enhancement process. Originally, the resolution of the "Cameraman" image was 333×550. After restoration using the 

proposed algorithm, the resolution is significantly improved to 1833×1833, demonstrating the efficacy of the method 

in enhancing image quality and resolution. 

Table 3 Average PSNR and RMSE observe for test images 

Test Image Average PSNR Average RMSE 

Girl 29.18 0.07291 

Peppers 27.26 0.0691 

Plane 25.48 0.074763 

Lady 25.03 0.03929 

Figure 6 visualizes the denoised images for both the deep learning algorithm with stride 1 and the benchmark 

algorithm NADLM. The images are a sample of the standard test images, and the noisy images are clean images 

applied with Poisson noise with image peak value 4. 

 

Figure 6 Visual impression of denoising algorithms. This figure presents the visual impression and resulting PSNR 

values for both the deep learning and benchmark denoising algorithm. The noisy images are obtained by applying 

Poisson noise when the clean images are of peak value 4. 
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Table 4: Comparison table 

Author/ 

Journal/Year 

Method Outcome 

wieslaw citko et al [1] 

IEEE, 2023 

Machine Learning: An Inverse 

Problem Approach 

50 × 56 pixels grey image, 0.154 MSE with 

regularisation = 0.002 

Veronika Spieker et al 

[2], IEEE 2024 

Comprehensive Review learning-

based motion correction 

NA 

Hailong He et al [3], 

IEEE, 2024 

Deep Learning RSOM Analysis 

Pipeline 

(DeepRAP) 

0.034 Average Mean Value Difference for 333 × 

550 Gray image 

saiprasad Ravishankar 

et al [4], IEEE, 2019 

Sparsity to Data-Adaptive 

Methods and Machine Learning 

Average PSNR achieve is 21.67 dB 

This work a Non-Symmetry and Anti-

Packing Deep Learning Model 

(NADLM) 

With 50x56 cameraman image MSE 0.128 which is 

less as compare to wieslaw citko [1]. 

Average mean Value difference observe is 

0.064016 for image size of 333 × 550 is higher than 

Hailong He et al [3] 

Average PSNR observe is 26.7375 it is higher than 

saiprasad Ravishankar et al [4]. 

Please note the results are based on the Motion-free 

k-space dataset images Girl, Papers, Plane and Lady 

As observed in Table 4, the proposed NADLM design achieves a higher PSNR compared to the method by Saiprasad 

Ravishankar et al. [4] and a lower MSE than Wieslaw Citko's approach [1]. However, the MSE of proposed work is 

higher when compared to the results by Hailong He et al. [3], which presents an area for future improvement in 

proposed study. Proposed work demonstrates statistically significant improvements in Peak Signal-to-Noise Ratio 

(PSNR) compared to traditional de-noising algorithms. Additionally, it delivers these enhanced results with reduced 

computational time, owing to the optimized design and efficient reconstruction stride sizes. 

5. CONCLUSION 

The proposed Non-Symmetry and Anti-Packing Deep Learning Model (NADLM) marks a significant advancement in 

Poisson de-noising, leveraging a multi-branch architecture to achieve robust noise suppression while preserving fine 

details. Its adaptability to varying noise levels and suitability for real-time applications underline its practical utility 

across diverse imaging scenarios. Although state-of-the-art non-machine learning algorithms for image de-noising 

exist, the question remains whether better performance can be achieved through the application of deep learning. 

Proposed work addresses that question by presenting a deep learning-based de-noising network that demonstrates 

statistically significant improvements over traditional benchmark algorithms. The training process utilized a motion-

free k-space dataset, with test cases including images such as Girl, Papers, Plane, and Lady, along with the standard 50 

× 56 "Cameraman" image. For the "Cameraman" image, the proposed method achieved an MSE of 0.128, which is 

lower than that reported in [1]. The observed average mean value difference for the "Cameraman" image with a size of 

333×550 is 0.232233, and the average PSNR was calculated to be 26.7375. These results are highly satisfactory and 

demonstrate notable improvements compared to baseline methods, establishing the proposed NADLM as a superior 

approach to Poisson de-noising. 
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