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ABSTRACT 

This paper studies the concepts of a new class of Vague Feebly Closed sets & Vague Feebly Open sets in vague 

topological space also some basic properties and the key theorems of these classes were discussed here.  
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1. INTRODUCTION 

The theory of vague sets was first initiated by Gau and Buehrer [1] as an extension of fuzzy set theory and vague sets 

are regarded as a special case of context-dependent fuzzy sets. Maheswari and Jain (1978) [4], Ibraheem (2008) [2,3] 

introduced feebly open and feebly closed sets, feebly generalized closed (briefly ℱg-closed) sets, generalized feebly 

closed (briefly gℱ -closed) sets respectively. In 2017,Vigneshwaran.M and Velmeenal. M [5], studied on RℱG - 

closed sets in topological spaces. 

In this article, we introduce the concept of Vague feebly open sets and Vague feebly closed sets in VTS. We also 

analyzed their characterizations and investigated their properties with suitable examples. For a subset A of a VTS 

(X, τ) , vague feebly closure of A , vague feebly interior of A  and the  vague complement of A  are denoted by 

Vℱcl(A), Vℱint(A) and V(AC ) respectively. 

1.1 Vague Feebly Open And Vague Feebly Closed Sets 

Definition 1.1.1: Let  A and B be any two vague subsets of a VTS. Then A is vague q-neighbourhood with B if there 

exists a VOS O with AqO ⊆ B. If A is not vague quasi-coincident with B then we write AℸqB.  

Thus AℸqB if and only if for each x ∈ X, A(x) ⊆ Bc(x). i.e., A ⊂ Bc. 

Proposition 1.1.2: Let  (X, τ) be a VTS. Then for a VS A of a VTS X, Vscl(A) is the union of all vague points Vx(α,β) 

such that every vague semi open set O with Vx(α,β)qO is vague q-coincident with A. 

Proof: Let xi ∈ Vscl(A).  

Suppose there is a vague semi - open set ‘O’ such that Vx(α,β)qO and OℸqA. 

⟹ O
c ⊇ A, where O

c
 is vague semi - closed. 

Also, O
c ⊇ Vscl(A) and Vx(α,β) ∉ O

c
 

⟹ Vx(α,β) ∉ Vscl(A). This is a contradiction to our assumption. 

Therefore, for every vague semi - open set ‘O’ with Vx(α,β)qO is vague q-coincident with A.  

Conversely, for every vague semi - open set ‘O’ with Vx(α,β)qO is vague q-coincident with A. Suppose xi ∈ Vscl(A). 

Then there is a vague semi - closed set G ⊇ A withVx(α,β) ∉G.  Hence V(G
c 

) is a vague semi - open set with 

Vx(α,β)q(G
c
) and Gc

ℸqA. i.e., A(x) ⊃(G
c
)

c
 = G. This is a contradiction to our assumption. Therefore, Vx(α,β) ∈ Vscl(A). 

Proposition 1.1.3: Let  (X, τ) be a VTS. Let A and B are two vague subsets of a VTS. Then  

 AℸqB⇔ A ⊆B
c
. 

 If A ∩ B = 0v then AℸqB 

 A ⊆ B ⇔ Vx(α,β)qB, for each Vx(α,β)qA. 

Proof: (i) Proof follows from the definition 1.1.1 

(ii) Let (A ∩  B)(x)  =  0v. Then min{A(x), B(x)}  =  0v 

⟹ A(x)  =  0v and B(x)  =  1v (or) B(x)  =  0v and A(x)  =  1v 

(i.e) Bc ⊇  (1v)c  
 = A (or) Ac ⊇  (1v)c  =  B 

⟹ A ⊆ Bc. 

Hence AℸqB. This proves (ii). 

(iii) Let A ⊆ B and Vx(α,β)qA. Then Ac(x) ⊆ (Vx(α,β)c) 
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Also A ⊆ B implies that Ac ⊇ B
c⟹ Bc ⊆ Vx(α,β)c. 

i.e., Vx(α,β) ⊆B. 

Therefore,  Vx(α,β)qB. Thus each Vx(α,β)qA, Vx(α,β)qB. 

Suppose, A(x) ⊃ B(x). Then Ac ⊆ Vx(α,β) does not implies Bc ⊆ Vx(α,β)
c  

This is a contradiction to our assumption.  

Therefore A(x) ⊆ B(x). This proves (iii). 

Proposition 1.1.4: Let  (X, τ) be a VTS. Let A be a vague subset of a VTS (X, τ). Then  

 Vint(Vcl(Vint(Vcl(A)))) = Vint(Vcl(A)) and  

 Vcl(Vint(Vcl(Vint(A)))) = Vcl(Vint(A)) 

 (Vint(Vcl(A)))c = Vcl(Vint(Ac)) and (Vcl(Vint(A)))c = Vint(Vcl(Ac)). 

Proof: (i) It is true that. 

Vint(Vcl(A)) ⊆ Vcl(A) 

Vcl (Vint(Vcl(A))) ⊆ Vcl(Vcl(A)) = Vcl(A)  

⟹ Vint(Vcl(Vint(Vcl(A)))) ⊆ Vint(Vcl(A))  

Since  Vint(Vcl(A)) is vague open, Vint(Vcl(A)) ⊆ Vcl (Vint(Vcl(A))), 

Vint(Vcl(A)) = Vint(Vint(Vcl(A))) ⊆ Vint(Vcl(Vint(Vcl(A)))) 

From the above, we have  

Vint(Vcl(Vint(Vcl(A)))) =   Vint(Vcl(A)). This proves (i). 

(ii) It is true that,  Vint(Ac) = (Vcl(A))c and Vcl(Ac) =  (Vint(A))c 

By this (ii) is proved. 

Proposition: 1.1.5: Let (X, τ) be a VTS.  Let A be a vague subset of a VTS (X, τ). Then Vint(Vcl(A)) ⊆ Vscl(A).  

Proof: Let Vx(α,β) ∈ Vint(Vcl(A)).  

Then by using the proposition 1.1.2, Vx(α,β) ⊆ Vint(Vcl(A)(x)). 

 This implies that x(α,β) ∈ Vscl(A).   

i.e.,  Vint(Vcl(A)) ⊆ Vscl(A). 

Theorem 1.1.6: Let (X, τ) be a VTS.  If a vague subset A is vague open, then Vint(Vcl(A)) = Vscl(A).  

Proof:  By using the above proposition 1.1.5, we have Vint(Vcl(A)) ⊆ Vscl(A). 

Therefore it is sufficient to prove Vscl(A) ⊆ Vint(Vcl(A)) . 

Let Vx(α,β) ∉ Vint(Vcl(A)). Then Vx(α,β)q(Vint(Vcl(A)))c
. 

By using proposition 1.1.2, x(α,β)q( Vcl(Vint(Ac))).  

By using proposition 1.1.4, Vcl(Vint(Ac)) =  Vcl(Vint(Vcl(Vint(Ac)))) 

This can be written as Vcl(Vint(Ac)) ⊆ Vcl(Vint(Vcl(Vint(A)c))).  

Also, Vcl(Vint(Ac)) is vague semi - open. By using proposition 4.1.3, we have 

Aℸ qVcl(Vint(A)c)  

⟹ Vx(α,β) ∉ Vscl(A)  

⟹ Vscl(A) ⊆ Vint(Vcl(A)) 

Therefore Vint(Vcl(A)) = Vscl(A). 

Theorem 1.1.7: Let (X, τ) be a VTS. If a vague subset A is vague closed, 

then Vcl(Vint(A)) = Vsint(A). 

Proof:  If A is vague closed, then V(A
c
 ) is vague open. 

By theorem 1.1.6,  

Vint(Vcl(Ac)) ⊆ Vscl(Ac). 

Then by (Vcl(Vint(A)))C ⊆ (Vsint(A))C. 

Taking complement on both sides, we get Vcl(Vint(A)) ⊆ Vsint(A). 
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Definition 1.1.8: A subset A in a VTSX is called Vague feebly open in X if there exists an VOS U such that U ⊆  A ⊆

Vscl(U). The complement of VℱOS is a VℱCS. 

Proposition 1.1.9: A vague subset A of a VTS (X, τ) is VℱOS  

if and only if  A ⊆ Vint(Vcl(Vint(A))).  

Proof: If A is VℱOS, then by the definition 1.1.8, we have U ⊆ A ⊆ Vscl(U), where U is a VOS. Then by theorem 

1.1.6, U ⊆ A ⊆ Vint(Vcl(U)).   

Since U is vague open, we have U = Vint(U) ⊆ Vint(A),  

it follows that Vcl(U) ⊆ Vcl(Vint(A)) 

⟹ Vint(Vcl(U)) ⊆ Vint(Vcl(Vint((A))).  

Thus, A ⊆ Vint(Vcl(U)) ⊆ Vint(Vcl(Vint((A))). 

Assume that ⊆ Vint(Vcl(Vint((A))). Now, Vint(A) ⊆ A.  

⟹ Vint(A) ⊆ Vint(Vcl(Vint((A))). Take = Vint(A) . 

Then U is a VOS in X, such that U ⊆ A ⊆ Vint(Vcl(U)). 

By theorem 1.1.6, U ⊆ A ⊆ Vscl(U).  

Therefore, A is VℱOS. 

Theorem 1.1.10: Let (X, τ) be a VTS. A set A is said to be a VℱOS  

if and only if A ⊆ Vscl(Vint(A)).  

Proof : Follows from proposition 1.1.5 and proposition 1.1.9. 

The following example is an example of VℱOS. 

Example 1.1.11: Let X = {a, b}, τ = {0, 1, G}, where G = {< x, [0.4, 0.7], [0.2, 0.4] >}  

Let A = {< x, [0.4, 0.7], [0.2, 0.4] >}.  Here A ⊆ Vint(Vcl(Vint((A))) = 1. 

Hence A is a VℱOS. 

Definition 4.1.12: A vague subset A of a VTS (X, τ) is a VℱOS if A ⊆  Vscl(Vint(A)) and VℱCS if  Vsint(Vcl(A))  ⊆

A. 

Proposition 1.1.13: Every VOS is a VℱOS. 

Proof: Let A be a VOS in X. 

Therefore A = Vint(A) and A ⊆ Vcl(Vint(A)).  

Now, A ⊆ Vint(Vcl(Vint((A))). 

⟹ A ⊆ Vint(Vcl(Vint((A))).  

Hence A is a vague feebly open set. 

The converse of the above proposition is not true as shown in the example below. 

Example 1.1.14: Let X = {a, b}, τ = {0, 1, G},   

where G = {< x, [0.4, 0.7], [0.2, 0.4] >} then (X, τ) be a VTS.  

Let  = {< x, [0.4, 0.7], [0.2, 0.4] >}.  

Here is not a VOS since Vint(A) ≠ A. 

But Vint(Vcl(Vint((A))) = 1. 

Hence, A ⊆ Vint(Vcl(Vint((A))).  

Therefore, A is VℱOS. 

Proposition 1.1.15:  A vague subset A in a VTS is a VℱOS if and only 

if it is vague semi - open and vague pre - open. 

Proof:  Let A be a VℱOS in X. 

Then A ⊆ Vint(Vcl(Vint((A))) 

⟹ A ⊆ Vint(Vcl(Vint((A))) ⊆ Vcl(Vint((A)). 

Hence A is a vague semi - open set. 

Since A is VℱOS in X, we have  

A ⊆ Vint(Vcl(Vint((A)))  

⟹ A ⊆ Vint(Vcl(Vint((A))) ⊆ Vint(Vcl((A))). 
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Hence A is vague pre - open set. 

Conversely, let A is a vague semi - open set,  

Therefore A ⊆ Vcl(Vint((A)) so that (Vcl(A)) ⊆ Vcl(Vcl(Vint((A))).  

Hence,  Vint(Vcl((A))) ⊆ Vint(Vcl(Vint(A))).  

Since A is a vague pre - open set, A ⊆ Vint(Vcl((A)) and  

hence A ⊆ Vint(Vcl(Vint(A)).  

Then by proposition 1.1.9, A is VℱOS. 

Definition 1.1.16: Let (X, τ) be a VTS and A ⊆  X.  

 The intersection of all Vague feebly closed subsets of the space X containing A is called the Vague feebly closure 

of A and denoted by Vℱcl(A) and also  

 Vℱcl(A) = A ∪ Vsint(Vcl(A)).  

 The union of all Vague feebly open subsets of the space X contained in A is called Vague feebly interior of A and 

is denoted by Vℱint(A).  

It is known that Vℱint(A) = A ∩ Vscl(Vint(A)). 

Proposition 1.1.17 : If A and B are two VℱOS then A ∪ B is a VℱOS. 

Proof: If A and B are two VℱOS, then by proposition 1.1.9, 

A ⊆ Vint(Vcl(Vint(A))) and B ⊆ Vint(Vcl(Vint(B))).  

Now A⋃B ⊆ Vint(Vcl(Vint(A)))U Vint(Vcl(Vint(B))). 

Since t(A) ∪ Vint(B) ⊆ Vint(A⋃B), 

A⋃B ⊆ Vint(Vcl(Vint(A))) U Vcl(Vint(B))) 

Also, A⋃B ⊆ Vint(Vcl(Vint(A))) U Vint(B) 

This implies ⋃B ⊆ Vint(Vcl(Vint(AUB))) . 

Hence AUB is a VℱOS. 

Proposition 1.1.18: Arbitrary union of vague feebly open sets is a vague feebly open set. 

Proof: Let{Ai} be a collection of VℱOSs  of a VTS (X, τ). 

Then there exists a VOS Ui such that  

Ui ⊆ Ai ⊆ Vscl(Ui) for each i.  

Now ∪ Ui ⊆∪ Ai ⊆∪ Vscl(Ui)   

⟹∪ Ui ⊆∪ Ai ⊆ Vscl(∪ Ui).  

Hence ∪ Ai is a VℱOS. 

Example 1.1.19: Intersection of any two VℱOSs need not be a VℱOS as shown in the example below. 

Let X = {a, b}, τ = {0, 1, G1, G2, G3, G4} be a vague topology on X.  

where   G1 = {< 𝑥, [0.5, 0.8], [0.5, 0.6] >}, G2 = {< 𝑥, [0.4, 0.5], [0.6, 0.7] >},  

G3 = G1 ∪ G2 = {< 𝑥, [0.5, 0.8], [0.4, 0.7] >} and  

G4 = G1 ∩ G2 = {< 𝑥, [0.4, 0.5], [0.4, 0.6] >} .  Let A = {< 𝑥, [0.5, 0.8], [0.4, 0.7] >}  and 

B = {< 𝑥, [0.2, 0.5], [0.5, 0.4] >} be VℱOSs in (X, τ)  

but  A ∩ B = {< 𝑥, [0.2, 0.5], [0.4, 0.4] >} is not a VℱOS in (X, τ). 

Proposition 1.1.20: The vague closure of a VOS is a VℱOS. 

Proof:  Let A be a VOS in X. 

Take A = Vint(A), 

Now, Vcl(A) = Vcl(Vint(A)).  

Since A ⊆ Vcl(A). 

Vint(A) ⊆ Vint(Vcl(A)). 

A ⊆ Vint(Vcl(Vint(A))). 

Hence A is a VℱOS. 

Proposition 1.1.21: Let A be a VℱOS in the VTS (X, τ) and suppose A ⊆ B⊆ Vscl(A).  

Then B is a VℱOS. 
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Proof:  Let A be a VℱOS in the VTS (X, τ) and  

B be any vague subset of X such that  A ⊆ B⊆ Vscl(A).   

Since A is VℱOS, there exists a VOS U such that U ⊆ A⊆ Vscl(U).  

Since U ⊆ B and Vscl(A) ⊆ Vscl(U) and thus B ⊆ Vscl(A) ⟹ U ⊆ B⊆ Vscl(U). 

Hence B is VℱOS. 

Definition 1.1.22: A vague subset A of (X, τ) is said to be a vague feebly generalised closed set (VℱGCS in short) if 

Vℱcl(A)  ⊆ U whenever A ⊆  U and U is a VℱOS  in X. 

Definition 1.1.23: A vague subset A of (X, τ) is said to be a vague generalised feebly  closed set (VGℱCS in short) if  

Vℱcl(A)  ⊆ U whenever A ⊆  U and U is a VOS  in X. 

Definition 1.1.24: A vague subset A of a VTS (X, τ) is VℱCS if there is a VCS U in X such that Vsint(U) ⊆  A ⊆  U. 

Proposition 1.1.25: A vague subset A of a VTS (X, τ) is VℱCS if and only if Vcl(Vint(Vcl(A) ⊆  A. 

Proof: If A is VℱCS then by the definition 1.1.24  

there is a VCS U such that Vsint(U) ⊆  A ⊆  U. Also Vcl(Vint(U)) ⊆  A ⊆  U.  

Since U is a VCS, Vcl(A) ⊆  U = Vcl(U).  

Therefore Vcl(Vint (Vcl(A))) ⊆  Vcl(Vint(U)) ⊆  A.  

Hence Vcl (Vint (Vcl(A))) ⊆  A. 

Conversely, Assume that Vcl(Vint(Vcl(A))) ⊆  A. 

Since Vcl(A) ⊇ A, Vcl(A) ⊇ Vcl (Vint(Vcl(A))). Take U = Vcl(A).  

Then U is a VCS in X such that Vsint(U) ⊆  A ⊆  U.  

By the definition 1.1.24, A is a VℱCS. 

Proposition 1.1.26: A vague subset A is a VℱCS if and only if V(Ac) is a VℱOS. 

Proof: Let A be a VℱCS.  

Then by the proposition 1.1.2, Vcl(Vint(Vcl(A))) ⊆  A.  

Taking compliment on both sides Vcl(Vint(Vcl(A))))c ⊇ Ac.  

This implies Ac ⊆  Vcl(Vint(Vcl(Ac))) . 

 Hence Ac is a  VℱOS.  

Conversely, let Ac is a VℱOS, then Ac ⊆  Vint(Vcl(Vint(Ac))).  

Taking complement  on both sides, (Ac)c ⊇ (Vint (Vcl(Vint(Ac))))c.  

Then A ⊇ Vcl(Vint(Vcl(A))).  

Therefore Vcl(Vint(Vcl(A))) ⊆  A.  

Hence A is a VℱCS. 

Theorem 1.1.27: A vague subset A is a VℱCSif and only if Vsint (Vcl(A)) ⊆  A. 

Proof: Let A be a VℱCS. Then Ac is vague feebly open. 

 By using theorem 1.1.10 Ac ⊆  Vscl(Vint(Ac)).  

Taking complement on both sides (Vsint (Vcl(A)))c ⊇ Ac . Ac ⊆  Vsint(Vcl(Ac)) . Therefore Ac  is a VℱOS . By 

proposition 1.1.26. A is a VℱCS.  

The following is an example of VℱCS. 

Example 1.1.28: Let X = {a, b}, τ = {0, 1, G},  where G = {< x, [0.4, 0.7], [0.2, 0.4] >}  

then (X, τ) be a VTS and let A = {< x, [0.3, 0.6], [0.6, 0.8] >}.  

Here Vint(Vcl(Vint((A))) ⊆  A.  

Therefore, A = {< x, [0.3, 0.6], [0.6, 0.8] >} is a VℱCS. 

Proposition 1.1.29: Every VCS is VℱCS. 

Proof: Let A be a VCS in X. Then A = Vcl(A).  

Since Vint (A) ⊆ A, Vint(Vcl(A)) ⊆ A ⇒ Vcl (Vint(Vcl(A))) ⊆ Vcl(A) = A. 
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By proposition 1.1.25, A is a VℱCS. 

The converse of the above theorem need not be true as shown in the example below  

Example 1.1.30: Let X = {a, b}, τ = {0, 1, G},  

where G = {< x, [0.4, 0.7], [0.2, 0.4] >} then (X, τ) be a vague topological space and 

let A = {< x, [0.2, 0.6], [0.6, 0.7] >}.  

Here A is a VℱCS. 

Proposition 1.1.31: If A and B are any two VℱCSs, then Vsint(Vcl(A)) ⊆ A and 

Vsint (Vcl(B)) ⊆ B. 

Proof: By theorem 1.1.27,  Vsint (Vcl(A)) ∩ Vsint (Vcl(B)) ⊆ A ∩ B.  

This implies Vsint (Vcl(A)) ∩ Vcl(B)) ⊆ A ∩ B. T 

his implies Vsint(Vcl(A ∩ B)) ⊆ A ∩ B.  

Hence A ∩ B is a VℱCS. 

Proposition 1.1.32: Finite intersection of VℱCSs is a VℱCS. 

Proof: Let{Ai} be a collection of VℱCSs of a VTS (X, τ). 

Then by the definition 1.1.24 there exists a VCS Vi such that  

Visint(Vi)  ⊆   Ai ⊆   Vi for each i. 

Now ∩ Visint(Vi) ⊆  ∩ Ai ⊆ ∩  Vi 

⟹ Vsint(∩ Vi)  ⊆  ∩ Ai ⊆ ∩ Vi  

Hence ∩Ai is a VℱCS. 

Remark 1.1.32: Union of any two VℱCSs need not be a VℱCSas shown in the example. 

Example 1.1.33: Let X = {a, b}, τ = {0, 1, G1, G2, G3, G4} be a VT on X,   

where   G1 = {< 𝑥, [0.5, 0.8], [0.5, 0.6] >}, G2 = {< 𝑥, [0.4, 0.5], [0.6, 0.7] >}, 

 G3 = G1 ∪ G2 = {< 𝑥, [0.5, 0.8], [0.4, 0.7] >} and  

 G4 = G1 ∩ G2 = {< 𝑥, [0.4, 0.5], [0.4, 0.6] >} and 

 let a VS A = {< 𝑥, [0.2, 0.5], [0.3, 0.6] >} and B = {< 𝑥, [0.5, 0.8], [0.6, 0.5] >} be two VℱCSs in (X, τ) but  A ∪ B =

{< 𝑥, [0.5, 0.8], [0.6, 0.6] >} is not a VℱCS in (X, τ). 

2. CONCLUSION 

This article has delved into the intricate concepts of vague feebly closed sets and vague feebly open sets within the 

framework of vague topological spaces. Through a rigorous exploration of these mathematical constructs, we have 

unveiled their properties and relationships and characteristics of vague topology. As we wrap up this study, it becomes 

evident that the investigation of vague feebly closed and open sets opens avenues for further research and exploration. 

We propose the following areas for future work: Extension to Higher Dimensions, Relation to Other Topological 

Concepts, Applications in Real-world Problems and Generalization to Different Vague Topological Spaces. 
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