

INTERNATIONAL JOURNAL OF PROGRESSIVE

RESEARCH IN ENGINEERING MANAGEMENT

AND SCIENCE (IJPREMS)

(Int Peer Reviewed Journal)

Vol. 05, Issue 02, February 2025, pp : 1187-1192

e-ISSN :

 2583-1062

Impact

 Factor :

7.001
www.ijprems.com

editor@ijprems.com

@International Journal Of Progressive Research In Engineering Management And Science Page | 1187

INNOVATIVE STRATEGIES FOR CLOUD DEPLOYMENT

Prof. G.L. Girhe
*1

, Aditya Awathare
*2

, Shailesh Madankar
*3

*1

Head Of Department Computer Engineering Department, SRPCE, Nagpur, Maharashtra, India.
*2,3

UG Student, Computer Engineering Department, SRPCE, Nagpur, Maharashtra, India.

DOI: https://www.doi.org/10.58257/IJPREMS38760

ABSTRACT

Our Cloud-Based Deployment Service makes it easy to deploy, test, and monitor applications in the cloud by using an

asset-based, actor-centric approach. Users can quickly deploy their code by providing a GitHub repository link, after

which the system automatically sets up the environment, assigns a unique identifier, and runs the code on the cloud

platform. This removes the hassle of manual setup, making development faster and more efficient. The service also

improves security by allowing quick deployment of monitoring tools to detect threats and protect cloud assets. With

features like automated environment management, real-time debugging, and built-in security checks, developers can

focus on building applications instead of fixing configuration issues.

Keywords: VPC(Virtual Private Cloud) , S3 Bucket , SQS(Simple Queuing Service) , EC2 Instance , Redis.

1. INTRODUCTION

Building a cloud-based quick deployment. service transforms the way modern applications are developed and

deployed. This platform simplifies the deployment process, allowing developers to focus more on creating innovative

solutions rather than dealing with complex setup issues. By simply providing a GitHub repository link, users can have

their environment automatically configured, including the installation of dependencies and necessary settings. Once

the setup is complete, the service deploys and runs the code, offering a temporary domain for real-time testing.

2. RELATED WORK

Cloud deployment has been a focus of various studies, exploring public, private, hybrid, and multi-cloud models.

Tools like Kubernetes for orchestration and dynamic resource allocation for cost efficiency have been widely

analyzed. Research highlights persistent challenges in security, compliance, and scalability, alongside emerging trends

such as serverless and edge computing. This study builds on prior work to address gaps in interoperability, real-time

scaling, and multi-tenant security, advancing cloud deployment practices.

3. METHODOLOGY

This section introduces a cloud-based deployment service designed to enable rapid and efficient application

deployment directly from GitHub. The system automates the entire environment setup, dependency installation, and

configuration process, ensuring that applications are deployed with minimal manual effort. By integrating with version

control systems, the service detects changes in the repository, automatically triggers builds, and deploys the latest

version of the application. To streamline the deployment workflow, the system leverages containerization and

serverless computing, allowing applications to be deployed in isolated environments that ensure consistency across

different cloud infrastructures. Automated provisioning allocates resources dynamically based on workload

4. PROBLEM STATEMENT

Deploying web applications at scale presents multiple challenges, requiring developers to handle code builds,

infrastructure provisioning, cloud service configurations, and application scaling. These processes are often complex,

time-consuming, and prone to misconfigurations, leading to increased costs, longer development cycles, and reduced

application reliability. Developers, particularly those with limited cloud expertise, may struggle with optimizing

performance, managing security risks, and ensuring seamless scalability across cloud environments

5. ARCHITECTURAL DESIGN

The architecture of the existing system is designed to facilitate the seamless deployment of web applications from

GitHub repositories to the cloud. It encompasses three main phases: Uploading, Deployment, and Request Handling.

Each phase is powered by dedicated services that work collaboratively to ensure efficient and smooth operations.

Uploading Phase

Users submit GitHub repository URLs via a simple interface. The upload service clones the repository and stores the

project files securely in an AWS S3 bucket for processing.

Deployment Phase

The deployment service processes the uploaded files, building assets for frameworks like React by transforming JSX

INTERNATIONAL JOURNAL OF PROGRESSIVE

RESEARCH IN ENGINEERING MANAGEMENT

AND SCIENCE (IJPREMS)

(Int Peer Reviewed Journal)

Vol. 05, Issue 02, February 2025, pp : 00-00

e-ISSN :

 2583-1062

Impact

 Factor :

7.001
www.ijprems.com

editor@ijprems.com

@International Journal Of Progressive Research In Engineering Management And Science Page 1188

into static files (HTML, CSS, JavaScript). AWS auto-scaling, using SQS and EC2, manages resource scaling

dynamically. Built assets are stored back in S3 for efficient distribution.

Request Handling Phase

An HTTP server handles user interactions, serving application files stored in S3. It supports file retrieval, caching

strategies, and global delivery through CDNs to ensure fast, reliable access. Status checks and robust error handling

enhance reliability and user experience.

Fig 1: System Architecture

This design delivers an automated, scalable, and efficient workflow for deploying web applications from source code to

live environments.

6. UPLOADING PHASE

The process starts with a user-friendly interface that allows users to submit their GitHub repository URLs. This action

activates the upload service, which performs the following tasks:

 Cloning the Repository: The upload service clones the repository from GitHub to capture the latest version of the

code.

 Uploading to S3: It subsequently uploads the project files to an AWS S3 bucket, offering a secure storage solution

for the source code, which is crucial for further processing

When you upload a file to Amazon S3, it is stored as an S3 object. Objects consist of the file data and metadata that

describes the object. You can have an unlimited number of objects in a bucket. Before you can upload files to an

Amazon S3 bucket, you need write permissions for the bucket. For more information about access permissions, see

Identity and Access Management for Amazon S3.

Fig 2: Upload Service

INTERNATIONAL JOURNAL OF PROGRESSIVE

RESEARCH IN ENGINEERING MANAGEMENT

AND SCIENCE (IJPREMS)

(Int Peer Reviewed Journal)

Vol. 05, Issue 02, February 2025, pp : 00-00

e-ISSN :

 2583-1062

Impact

 Factor :

7.001
www.ijprems.com

editor@ijprems.com

@International Journal Of Progressive Research In Engineering Management And Science Page 1189

The initial phase involves uploading your project to the deployment service. This is where the system interacts with the

GitHub repository to get the code that needs to be deployed. A persistent queue (often backed by Redis) is utilized to

manage deployment tasks. This means that uploads can be processed in an orderly fashion, preventing server overload

and ensuring that requests can be handled one at a time if necessary.

7. DEPLOYMENT PHASE

Once the upload is complete, the system signals the deployment service to initiate the transformation of the raw source

code into deployable assets. Key responsibilities of the deployment service include:

Build Process: For projects built with React, the service transforms JSX and other components into static HTML, CSS,

and JavaScript files.

Auto-Scaling: Utilizing AWS’s auto-scaling features, including Amazon SQS for task queuing and EC2 or Faregate for

dynamically adjusting computing resources, this service guarantees optimal performance during fluctuations in demand.

Once the build process is complete, the resulting assets are stored back in S3, ready for user access.

The task of designing a scalable, efficient, and cost-effective deployment solution should not be limited to how you will

update your application version, but should also consider how you will manage supporting infrastructure throughout the

complete application

Fig 3: Deployment Service

8. REQUEST HANDLING PHASE

The request phase in a Cloud-Based Rapid Deployment Service (CBRDS) is critical as it manages how clients interact

with the deployed applications. This phase involves receiving and processing requests from users, serving the

appropriate application files, and handling application status checks. Below is a detailed breakdown of the entire request

phase process:

 Receiving HTTP Requests

The first step in the request phase is to set up a robust HTTP server capable of handling requests from users. Utilizing

the Express framework, we can create a server that listens for incoming requests on specified routes.

 Common request types include:

 GET requests to retrieve the application files.

 GET requests to check the deployment status.

 Each request is routed to appropriate handler functions based on the endpoint.

Fetching Application Files from Storage

Once the deployment ID is obtained, the system needs to search for the associated application files stored in an object

storage service like AWS S3. This involves constructing a request to retrieve the relevant files based on the ID.

Using the deployment ID to retrieve the associated files from the storage service (e.g., AWS S3).

Construct an S3 get Object request to retrieve the files.

Serving the Application Files: After successfully retrieving the application files, the service must prepare to serve these

files back to the client. This involves sending the appropriate files as a response to the user’s request.

INTERNATIONAL JOURNAL OF PROGRESSIVE

RESEARCH IN ENGINEERING MANAGEMENT

AND SCIENCE (IJPREMS)

(Int Peer Reviewed Journal)

Vol. 05, Issue 02, February 2025, pp : 00-00

e-ISSN :

 2583-1062

Impact

 Factor :

7.001
www.ijprems.com

editor@ijprems.com

@International Journal Of Progressive Research In Engineering Management And Science Page 1190

Depending on the nature of the request (whether it’s for HTML content, CSS, or JavaScript), the server should send

back the corresponding file with the

Fig 4: Request Phase

The request phase in a Cloud-Based Rapid Deployment Service (CBRDS) is a multifaceted process that manages user

interactions and resource retrieval efficiently. By establishing a clear structure for receiving requests, unpackaging

parameters, fetching application files, serving responses, handling status checks, and implementing robust error

handling and logging, the service ensures a seamless and user-friendly experience.

9. RESULTS AND DISCUSSIONS

EC2 INSTANCE MONITORING

The percentage of physical CPU time that Amazon EC2 uses to run the EC2 instance, which includes time spent to run

both the user code and the Amazon EC2 code. At a very high level, CPU-Utilization is the sum of guest CPU

Utilization and hypervisor CPU Utilization. Tools in your operating system can show a different percentage than

CloudWatch due to factors such as legacy device simulation, configuration of non-legacy devices, interrupt-heavy

workloads, live migration, and live update.

Fig 5: CPU Utilization

The number of packets sent out by the instance on all network interfaces. This metric identifies the volume of

outgoing traffic in terms of the number of packets on a single instance.

Fig 6: Network Packets out(count)

This metric is available for basic monitoring only (5-minute periods). To calculate the number of packets per second

(PPS) your instance sent for the 5 minutes, divide the Sum statistic value by 300. You can also use the CloudWatch

INTERNATIONAL JOURNAL OF PROGRESSIVE

RESEARCH IN ENGINEERING MANAGEMENT

AND SCIENCE (IJPREMS)

(Int Peer Reviewed Journal)

Vol. 05, Issue 02, February 2025, pp : 00-00

e-ISSN :

 2583-1062

Impact

 Factor :

7.001
www.ijprems.com

editor@ijprems.com

@International Journal Of Progressive Research In Engineering Management And Science Page 1191

metric math function DIFF_TIME to find the packets per second. For example, if you have graphed Network Packets

Out in CloudWatch as m1, metric math formula m1/(DIFF_TIME(m1)) returns the metric in packets/second. For more

information about DIFF_TIME and other metric math functions.

Fig 7: VPC(Virtual Private Cloud)

The resource map shows relationships between resources inside a VPC and how traffic flows from subnets to NAT

gateways, internet gateway and gateway endpoints.

Fig 8: AWS S3

Amazon Simple Storage Service (Amazon S3) is an object storage service offering industry-leading scalability, data

availability, security, and performance. Millions of customers of all sizes and industries store, manage, analyze, and

protect any amount of data for virtually any use case, such as data lakes, cloud-native applications, and mobile apps.

With cost-effective storage classes and easy-to-use management features.

10. CONCLUSION

The existing cloud-based rapid deployment service offers a streamlined and efficient solution for deploying web

applications from GitHub repositories to the cloud. By leveraging robust services like AWS S3 for secure storage,

auto-scaling with AWS EC2 and Fargate, and effective request handling through caching and global distribution, the

system ensures scalability, reliability, and high performance. Its structured phases—uploading, deployment, and

request handling—simplify complex deployment workflows, enabling seamless user interactions and quick application

delivery. This architecture paves the way for a responsive, user-friendly platform that meets the growing demands for

rapid and scalable web application deployment

11. FUTURE SCOPE

The future of deployment services has great potential for further development and scaling Integration with More

Cloud Providers. Expanding beyond AWS to include Google Cloud Platform (GCP) and Microsoft Azure for more

flexibility. Advanced Auto-Scaling and Load Balancing: Utilizing machine learning to predict traffic patterns and

adjust server capacity dynamically. Support for Multiple Frameworks: Extending support to Angular, Vue.js, and full-

stack applications like Node.js or Django. CI/CD Pipeline Integration: Evolving into a comprehensive CI/CD platform

with automated testing, quality assurance, and rollback mechanisms.

INTERNATIONAL JOURNAL OF PROGRESSIVE

RESEARCH IN ENGINEERING MANAGEMENT

AND SCIENCE (IJPREMS)

(Int Peer Reviewed Journal)

Vol. 05, Issue 02, February 2025, pp : 00-00

e-ISSN :

 2583-1062

Impact

 Factor :

7.001
www.ijprems.com

editor@ijprems.com

@International Journal Of Progressive Research In Engineering Management And Science Page 1192

12. REFERENCES

[1] Durner, D., Leis, V., & Neumann, T. (2024). Exploiting Cloud Object Storage for High-Performance

Analytics Proceedings of the VLDB Endowment, 16(11), 2769-2782 3.

[2] Prof. G. L. Girhe, Amol Harinkhede, Harsh Pakhale , Deployment Through Cloud Services, Vol. 04, Issue 09,

September 2024, pp : 929-931

[3] Prof. G. L. Girhe , Aditya Awathare, Shailesh Madankar, Quick Deployment Service, Vol. 04, Issue 09,

September 2024, pp : 939-941

[4] Patel, S., et al., Review of PaaS offerings such as AWS Elastic Beanstalk, Google App Engine, and Azure

App Service for fast, scalable deployment of web applications. International Journal of Cloud Computing and

Services Engineering, 2023. 10(2): p. 178-192..

[5] Li, P., et al., Comparing deployment speed, cost-efficiency, and cloud platform suitability for applications,

focusing on Amazon Web Services and Microsoft Azure for enterprise solutions. IEEE Cloud Computing,

2023. 6(4): p. 115-128..

[6] Tan, Y., et al., Examining the role of automated scaling in cloud-based deployment services, improving

application uptime and resource utilization with dynamic scaling. Cloud Computing Review, 2023. 14(3): p.

67-82.

[7] Chen, W., et al., Exploring various cloud service models (IaaS, PaaS, SaaS) for rapid application deployment,

evaluating operational overhead and efficiency in cloud environments. Journal of Computing and Cloud

Technology, 2023. 9(1): p. 32-44.

[8] Reddy, A., et al., Evaluating multi-region deployment services in cloud platforms for global application

performance, focusing on load balancing, redundancy, and failover strategies. Journal of Cloud Infrastructure,

2022. 18(7): p. 230-243.

[9] Platforms like AWS Lambda for rapid deployment, highlighting cost reductions, scalability, and simplified

infrastructure management. Cloud Computing Advances, 2022. 10(3): p. 102-113

[10] Singh, K., et al., Review of serverless computing. Huang, L., et al., Optimizing deployment of high-

performance web applications using cloud resources, focusing on latency reduction and efficient resource

[11] Zhang, T., et al., Investigating the security challenges in cloud-based rapid deployment services, focusing on

encryption, authentication, and data privacy. IEEE Transactions on Cloud Computing, 2022. 8(6): p. 926-939.

[12] Brown, M., & Lee, S. “Building Custom Deployment Pipelines with AWS Services,” AWS Summit

Proceedings, 2021.

[13] Duvvuri, K., & Prathibha, S. “A Study on CI/CD Pipeline Automation,” International Journal of Engineering

and Advanced Technology, 2021.

[14] Liang, Q., et al., Surveying cloud platforms for continuous integration and delivery (CI/CD), evaluating tools

and techniques for rapid application deployment. International Journal of Web and Cloud Computing, 2021.

10(1): p. 89-101..

