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ABSTRACT  

Considering the significant economic, social, and environmental repercussions of earthquakes, there is a growing 

recognition of the need for an integrated framework for life-cycle seismic performance evaluation of buildings. This 

study proposes a comprehensive approach for assessing the seismic resistance and sustainability of reinforced concrete 

buildings across their entire life cycle. The earthquake's life-cycle costs and direct and indirect impacts are assessed in 

terms of asset loss, time loss, human loss based on the number of casualties and fatalities, environmental damage 

based on greenhouse gas emissions, and energy consumption. To quantify the life-cycle losses, the FEMA approach 

for intensity-based and time-based loss analysis, economic input-output life-cycle assessment, and whole-building 

energy analysis of Energy Plus are applied. The framework is used for commercial reinforced concrete structures that 

have and do not have shear walls. The results reveal that RC shear walls may greatly increase resilience by lowering 

monetary loss and downtime while also improving interior air temperature variation and lowering energy 

consumption. 

Keywords: Life cycle analysis, FEMA approach, loss estimation, Thermal-Mass Shear Walls, sustainability, analysis 

of Energy. 

1. INTRODUCTION 

In this study concerns about significant economic, social, and environmental losses caused by natural disasters, 

particularly earthquakes, hurricanes, and floods, have fueled a drive for comprehensive assessment and decision-

making tools, approaches, and methodologies. Structure and infrastructure engineers may now quantify numerous 

engineering demand parameters (EDP) of the desired system and display a meaningful and complete description of its 

performance under high dangers, thanks to recent advancements in loss estimating methodologies. The life-cycle cost 

of the system's embodied and operational energy may also be assessed using process-based or economic-based life-

cycle assessment (LCA) approaches and whole-building energy simulation tools. Yet, as evaluation techniques 

advance, the necessity for comprehensive assessment approaches that incorporate resilience, sustainability, and 

operational energy consumption data into a single holistic framework becomes more apparent. Buildings are the 

largest energy consumers, accounting for about 50% of total energy consumption in the United States (Horvath 2004). 

Around 30% of it is embodied energy from extraction, processing, and transportation. To quantify embodied energy in 

terms of CO2 equivalent or other environmental measurements, process-based and economic input-output LCA 

methodologies are applied. Buildings need a significant amount of operational energy to condition the inside 

environment (heating, cooling, ventilation), power equipment, and so on. Because of their varying thermal 

characteristics, structural and non-structural components influence energy usage (e.g., thermal mass). The life-cycle 

cost of a structure is heavily influenced by choices made during the design process. For example, the 

mechanical/thermal characteristics of concrete, as well as the size and position of reinforced concrete (RC) shear walls 

on the plan, determine the transitional and rotational stiffness of the whole structure, as well as the building's elastic 

and nonlinear plastic performance. Surprisingly, the three parameters have a significant effect on heat/energy loss 

through the shear wall (with high thermal mass) as well as the total energy needed for heating and cooling the 

structure. The high thermal mass of RC shear walls amplifies this effect. The capacity of a structure or its components 

to store thermal energy is referred to as thermal mass. It has a discernible impact on the amount of energy used for 

cooling and heating, as well as occupant comfort. Thermal mass used well as an energy-efficiency strategy may result 

in an eco-friendly and sustainable design. The cost-effectiveness of this strategy will become clearer after the 

influence of building components with high thermal mass on resilience is examined. This research proposes a 

complete approach for assessing the life-cycle seismic resilience and sustainability of reinforced concrete buildings 

while taking thermal mass into account. To quantify the life-cycle asset loss, time loss, number of casualties and 

fatalities, as well as embodied and operational energy, the FEMA P-58 method for intensity-based and time-based 

resilience assessment, the Carnegie Mellon University method for economic input-output life-cycle assessment, and 

whole-building operational energy analysis performed in Energy Plus are used. The framework is being used for a 
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collection of reinforced concrete (RC) commercial buildings in Los Angeles, California. This study's probabilistic life-

cycle assessment framework attempts to enable comprehensive post-evaluation cost-benefit decision-making. Figure 1 

shown the stepwise flowchart of Resilience, Sustainability, and Energy Analysis (RSEA). 

 

Figure 1: Stepwise flowchart of Resilience, Sustainability, and Energy Analysis (RSEA) 

2. METHODOLOGY 

The EIO LCA approach is used to measure sustainability parameters. The original cost of the structure and the loss 

due to earthquakes are used to calculate the life-cycle environmental effect of construction and maintenance 

operations. Table 2 illustrates the environmental effect of RC building construction and seismic repair/replacement 

throughout their entire life cycle. In Table 1, GWP refers for Global Warming Potential, while CO2 is for Carbon 

Dioxide. The terms fossil and CO2 Process refer to CO2 emissions into the atmosphere from fossil fuel combustion 

sources and sources other than fossil fuel combustion, respectively. Among the archetypes, 2SW has a substantially 

lower overall GWP than the other two. The frame building (RCF) has the greatest environmental impact due to 

earthquake since the amount of damage to RCF is greater than to others. 

  Analysis Life-cycle environmental impacts 

Table 1: Life-cycle environmental impacts 

 

Metric 

Greenhouse Gases 
Water 

Withdrawal Total 

GWP 

CO2 

Fossil 

CO2 

Process 

Unit 
ton 

CO2e 

ton 

CO2e 

ton 

CO2e 
kGal 

Initial Construction 

4-story in 2,720 2,240 284 23,200 
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LA 

Annual Seismic Environmental Consequence 

2SW 17.4 14.4 1.59 162 

1SW 27.8 23 2.55 259 

RCF 76.5 63.1 7.01 713 

 Analysis to annual operational energy consumptions, water consumptions, equivalent CO2 emissions and 

their corresponding costs 

Table 2 summarizes the yearly operating energy and water consumptions, comparable CO2 emissions, and associated 

expenditures. The yearly energy consumption for all buildings with base glazing and high-performance glazing is 

around 150 kWh/m2 and 130 kWh/m2, respectively, which is consistent with the expected values of. Therefore, the 

yearly energy expenses of the same glazing type are comparable see Table 2. Lower glass areas in shear wall 

structures decrease HVAC energy use while increasing lighting demand because shear walls block some daylighting, 

as seen in Figure 2. Moreover, the price difference between electricity and natural gas mitigates the energy cost 

differential for the examined structures since RC frame buildings normally demand more energy for heating. As 

shown in Table 2, the adoption of high-performance glazing decreases the energy consumption of all building layouts. 

This difference is related to the energy savings in the HVAC system's operation. As compared to buildings with BG, 

HVAC reduces energy consumption by 25.6%, 21.3%, and 20.9% for 2SW, 1SW, and RCF, respectively. 

Table 2: Annual operational energy consumption, water consumption, equivalent CO2 emission and costs for studied 

arche types with different glazing 

Model 
Energy/Cost 

(MWh/k$) 

Water 

(kGal/k$) 

CO2e 

(ton/k$) 

2SW-BG 527.0/87.7 387.3/2.9 349.5/7.0 

1SW-BG 530.8/88.7 387.3/2.9 353.3/7.1 

RCF-BG 540.3/88.6 387.3/2.9 308.2/6.2 

2SW-HG 480.6/81.1 387.3/2.9 322.8/6.5 

1SW-HG 482.9/81.7 387.3/2.9 325.3/6.5 

RCF-HG 474.5/79.6 387.3/2.9 316.9/6.3 

3.  RESULTS & DISCUSSION 

 

Figure 2: HVAC and lighting energy consumptions of RC buildings with different window glazing 

The adaptive comfort model based on ASHRAE Standard 55-2010 was used to determine the thermal comfort of the 

occupancy. When the temperature is between 10 
0
C and 35 

0
C, the model assumes that the comfort temperature is a 

function of the monthly mean outside air dry-bulb temperature, and LA meets this condition. It establishes two 

acceptance criteria, 80% and 90%, to signify whether or not the interior air temperature falls within the prescribed 

parameters. The RCF-BG, 1SW-BG, and 2SW-BG prototype buildings are used to demonstrate the possible influence 

of shear walls on thermal comfort. Figure 3 illustrates the amount of time when the ASHRAE55 80% acceptable level 

is not fulfilled in hours. It demonstrates that the use of shear walls may significantly minimize the amount of time 
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when the interior comfort temperature is not attained. Building 2SW-BG took roughly 30% less time than constructing 

RCF-BG. This is consistent with studies that show thermal mass walls help lessen interior air temperature fluctuation 

in buildings. 

 

Figure 3: Time not meet ASHRAE55 adaptive thermal comfort model 80% limits requirements for buildings with 

base glazing 

4. CONCLUSIONS 

To quantify numerous economic, social, and environmental parameters, a framework for building structure resilience, 

sustainability, and energy evaluation is provided. This comprehensive methodology serves as the foundation for a risk-

informed multi-criteria life-cycle decision analysis of structural-architectural systems. Utilizing RC shear walls may 

dramatically increase building performance. It considerably minimises the collapse inter-story drift (around 800% on 

average) and hence reduces monetary loss and downtime. In addition to these performance advantages, shear walls 

may effectively minimise the in-door air temperature fluctuation, as shown by ASHRAE55 estimates that a reduction 

of 30% of the time does not satisfy the 80% thermal comfort standard. Stiff shear wall frames, on the other hand, will 

suffer enormous absolute maximum spectral acceleration, affecting non-structural components prone to extreme 

acceleration, such as suspended ceilings. This may result in more casualties in shear wall RC structures than in frame 

RC buildings. For example, the RC frame has an annualised number of injuries of 0.0132, but shear wall RC 

archetypes have an annualised rate of injuries of 0.0365. Moreover, since shear walls have a high thermal mass, base 

glazing reduces yearly HVAC energy use. 
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