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ABSTRACT 

Malicious users can attack Web applications by exploiting injection vulnerabilities in the source code. This work 

addresses the challenge of detecting injection vulnerabilities in the server-side code of Java Web applications in a 

scalable and effective way. We propose an integrated approach that seamlessly combines security slicing with hybrid 

constraint solving; the latter orchestrates extract minimal program slices relevant to security from Web programs and 

to generate attack conditions. We then apply hybrid constraint solving to determine the satisfiability of attack 

conditions and thus detect vulnerabilities. The experimental results, using a benchmark comprising a set of diverse and 

representative Web applications/services as well as security benchmark applications, show that our approach is 

significantly more effective at detecting injection vulnerabilities than state-of-the-art approaches, achieving 98% 

recall, without producing any false alarm. We also compared the constraint solving module of our approach with state-

of-the-art constraint solvers, using six different benchmark suites; our approach correctly solved the highest number 

of constraints (665 out of 672), without producing any incorrect result, and was the one with the least number of time-

out/failing cases. In both scenarios, the execution time was practically acceptable, given the offline nature of 

vulnerability detection.  

1. INTRODUCTION 

Symbolic execution and constraint solving represent a state-of-the-art approach used in security analysis to identify 

vulnerabilities in software systems. Symbolic execution executes a program with symbolic inputs and at the end 

generates a set of path conditions. Each of them corresponds to a constraint imposed on the symbolic inputs to follow 

a certain program path, i.e., a constraint characterizing a possible execution. By solving these constraints with a 

constraint solver, one can determine which concrete inputs can cause a certain program path to be executed. In the 

context of security analysis this approach is used to detect injection vulnerabilities, i.e., program locations in which 

certain malicious inputs can alter the intended program behaviour. Roughly speaking, this approach consists of 

solving the constraints obtained by conjoining the path conditions (generated by the symbolic execution) with attack 

specifications provided by security experts. The main strength of this approach is that vulnerability detection yields a 

limited number of false positives, since the concrete inputs determined with constraint solving prove the existence of 

vulnerabilities. 

However, the effectiveness and precision of this approach are challenged by two main problems that affect symbolic 

execution and constraint solving 1) path explosion and 2) solving complex constraints (e.g., constraints involving 

regular expressions or containing string/mixed or integer operations). Notice that while these problems are 

independent from the context in which symbolic execution and constraint solving are applied, the solutions to mitigate 

them can be tailored for a specific context. Nevertheless, existing proposals in the context of vulnerability analysis 

have not fully addressed these problems. The path explosion problem is triggered by the huge number of feasible 

program paths that symbolic execution has to explore in large programs. To mitigate this problem in the 

context of vulnerability analysis, in previous work we proposed an approach to extracting security slices from Java 

programs. A security slice contains a concise and minimal sequence of program statements that affect a given security 

sensitive program location (sink), such as an SQL query statement. Symbolic analysis can then be performed on 

security slices instead of the whole program; in this way path conditions are analyzed only with respect to the paths 

leading to sinks instead of every path in the program. Since, according to our experience, the number of sinks in a 

program is low1 and security slices are much smaller (approx. 1%) than the program containing them, this approach 

can effectively mitigate the path explosion problem. 

The path explosion problem is triggered by the huge number of feasible program paths that symbolic execution has 

to explore in large programs. To mitigate this problem in the context of vulnerability analysis, in previous work 

https://www.researchgate.net/publication/355423220_Efficiency_and_Effectiveness_of_Web_Application_Vulnerability_Detection_Approaches_A_Review
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we proposed an approach to extracting security slices from Java programs. A security slice contains a concise and 

minimal sequence of program statements that affect a given security sensitive program location (sink), such as an SQL 

query statement. Symbolic analysis can then be performed on security slices instead of the whole program; in this way 

path conditions are analyzed only with respect to the paths leading to sinks instead of every path in the program. 

Since, according to our experience, the number of sinks in a program is low1 and security slices are much smaller 

(approx. 1%) than the program containing them, this approach can effectively mitigate the path explosion problem. 

2. Literature Survey 

Ajjarapu Kusuma Priyanka et.al., web application security has become a major challenge due to the common 

vulnerabilities found in web applications. Attackers possess a never-ending list of vulnerabilities and payloads to 

exploit them in order to gain access over various web applications maliciously. Each time when there are any changes 

made at some layer of web-application architecture, there exists a chance of creating novel vulnerabilities. In this 

paper, we brief out our analysis on common and familiar vulnerabilities like Sql Injection, Cross site Scripting and 

Cross site Request Forgery (CSRF) and demonstrate the exploitation of these vulnerabilities by considering DVWA, a 

highly vulnerable web application designed for education purpose. We carry out exploitation both manually and 

through automated tools. We conclude our research by inferring some preventive mechanisms to be adopted while 

designing the web applications to mitigate such types of attacks. 

Bogdan Korniyenko et.al., developed web application protection system by using modern technologies NET 

Framework, ASP. NET Core, EF, SSMS, Swagger. The system is resistant to changes and outside interference, able to 

prevent unauthorized access. The main types of vulnerabilities in web applications are considered. The most popular 

ready-made services for the implementation of the appropriate protection are described. The white list model of 

developing secure web applications and the main steps of the model implementation is defined. Implement a white list 

model for a web application by using a system of roles and access. The server part of the web application has been 

developed, which includes the built-in functionality of the basic methods of hacking prevention. Impact of SQL 

injection through project architecture is not possible. A method for accessing private user information has been 

developed by using the Rijndael encryption algorithm. 

Rizki Agung Muzaki et.al., the use of web applications has been undergoing rapid increase. Many individuals, 

groups, organizations or governments use web applications as a means to exchange information or support business-

related tasks. Despite the increased adoption, web applications use is however directly associated with comparable 

threats and attacks. With the increasing threats and attacks on web applications, organizations require a more effective 

concept of web application security. Web Application Firewall (WAF) is a security concept that can be used to 

prevent various threats and attacks on web applications. WAF has the ability to filter packets, block dangerous HTTP 

requests, and also do logging. This paper demonstrates and proposes the implementation of WAF on a web-based 

application using Mod Security and the Reverse Proxy method. From the tests carried out e.g. cross-site scripting, 

SQL injection and unauthorized vulnerability web scanning, all threats were successfully thwarted by Mod Security 

and reverse proxy method implemented in the WAF. 

Jeom-Goo Kim et.al., the expansion of the Internet has made web applications become a part of everyday life. As a 

result, the numbers of incidents which exploit web application vulnerabilities are increasing. A large percentage of 

these incidents are SQL Injection attacks which are a serious security threat to databases with potentially sensitive 

information. Therefore, much research has been done to detect and prevent these attacks and it resulted in a decline of 

SQL Injection attacks. However, there are still methods to bypass them and these methods are too complex to 

implement in real web applications. This paper proposes a simple and effective SQL Query removal method which 

uses Combined Static and Dynamic Analysis and evaluates the efficiency through various experiments. 

Giovanni Agosta et.al., the automatic identification of security vulnerabilities is a critical issue in the development of 

web-based applications. We present a methodology and tool for vulnerability identification based on symbolic code 

execution exploiting Static Taint Analysis to improve the efficiency of the analysis. The tool targets PHP web 

applications, and demonstrates the effectiveness of our approach in identifying cross-site scripting and SQL injection 

vulnerabilities on both NIST synthetic benchmarks and real-world applications. It proves to be faster and more 

effective than its main competitors, both open source and commercial. 

3. PROBLEM STATEMENT 

The vulnerable user inputs within the web page or web application. A web page or web application that has 

SQL Injection vulnerability uses such user input directly in an SQL query. The attacker can create input 

content. The unauthorized viewing of user lists, the deletion of entire tables and, in certain cases the 

attacker gaining administrative rights to a database, all of which are high detrimental to a business. 
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4. PROPOSED SYSTEM 

We proposed a fallback mechanism to extend existing string constraint solvers for dealing with constraints with 

unsupported string operations. This mechanism, implemented in the ACO-Solver tool, used an off-the-shelf automata-

based string constraint solver combined with a search-driven constraint solving procedure based on the Ant Colony 

Optimization meta-heuristic. The goal of the work presented in this paper is to provide a scalable approach, based on 

symbolic execution and constraint solving, to effectively find injection vulnerabilities in source code, which generates 

no or few false alarms, minimizes false negatives, and overcomes the path explosion problem and the one of solving 

complex constraints. 

5. METHODOLOGY 

Motivation 

The challenges in adopting an approach based on symbolic execution and constraint solving in the context of 

vulnerability detection. Although we crafted this example for illustrative purposes, it can be considered realistic 

since it contains typical operations that are commonly found in modern Web applications. Moreover, it contains 

vulnerabilities that embody the patterns tracked in the CWE dictionary. The codes at vulnerable to XSS because 

of the inadequate sanitization procedure applied to variable sid, which contains a user input the codes at   line     

is   vulnerable   to   XPathi   because   the   variable   sid, containing    a    user    input, is not sanitized properly 

before using   it   in   the   XPath query. Indeed, the standard sanitization procedure from OWASP [10] applied to 

variable sid only escapes meta-characters. 

Existing Challenges 

The path explosion problem is triggered by the huge number of feasible program paths that symbolic execution has to 

explore in large programs. To mitigate this problem in the context of vulnerability analysis, in previous work we 

proposed an approach to extracting security slices from Java programs. A security slice contains a concise and 

minimal sequence of program statements that affect a given security sensitive program location (sink), such as an SQL 

query statement. 

Architecture 

 

Figure 1. Architecture 

Modules 

User 

 Register 

 Login 

 Search  

 View the website 

 Make right click in website 
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Admin 

 Login 

 Approve the web site 

 Block unwanted website 

 View user details 

Owner 

 Register 

 Login 

 Register Web site 

 Upload and ready to host Website 

 View blocked user account 

Register 

Register Your Account. A check register, also called a cash disbursements journal, is the journal used to record all of 

the checks, cash payments, and outlays of cash during an accounting period. 

Login 

A login is a set of credentials used to authenticate a user. Most often, these consist of a username and password. 

However, a login may include other information, such as a PIN number, password, or passphrase. Some logins require 

a biometric identifier, such as a fingerprint or retina scans. 

Search  

A web search engine or Internet search engine is a software system that is designed to carry out web search (Internet 

search), which means to search the World Wide Web in a systematic way for particular information specified in a 

textual web search query 

View the website 

In this module, user can view the website which is uploaded by website owner. 

Make right click in website 

In this module, if user tries to make right click for get a source code that account will blocked automatically. 

Admin 

Login 

A login is a set of credentials used to authenticate a user. Most often, these consist of a username and password. 

However, a login may include other information, such as a PIN number, password, or passphrase. Some logins require 

a biometric identifier, such as a fingerprint or retina scans. 

Approve the web site 

This module, the administrator ready to confirm the site and if the site is authenticable administrator will favor to 

dynamic the site 

Block unwanted website 

On the Internet, a block or ban is a technical measure intended to restrict access to information or resources. Blocking 

and its inverse, unblocking, may be implemented by the owners of computers using software. Privileged users can 

apply blocks that affect the access of the undesirables to the entire website. 

Owner 

Register 

Register Your Account. A check register, also called a cash disbursements journal, is the journal used to record all of 

the checks, cash payments, and outlays of cash during an accounting period. 

Login 

A login is a set of credentials used to authenticate a user. Most often, these consist of a username and password. 

However, a login may include other information, such as a PIN number, pass code, or passphrase. Some logins require 

a biometric identifier, such as a fingerprint or retina scans. 

Register Web site 

Web site registration is the process of registering a Web site name, which identifies one or more IP addresses with a 

name that is easier to remember and use in URLs to identify particular Web pages. The person or business that 

registers Web site name is called the Web site name registrant. 
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§ 

Upload and ready to host Website 

The owner can allow posting their web site after them web site getting approval from the admin. and the website 

visible to all the users. 

View blocked user account 

In this module, owner can view the blocked account. 

Implementation 

The security slicer first extracts a security slice for each sink. It then explores the paths in the slice that lead to 

the sink in a depth-first manner, extracting the path conditions and the context information. The latter is used to 

generate the attack condition, by conjoining the path condition with the appropriate threat model. For scalability 

reasons, when encountering loops and recursive function calls, the slices iterate through them only once. The 

constraint solver comprises three modules: constraint preprocessor, an automata-based and interval constraint solver 

and a search-based constraint solver. The constraint preprocessor makes use of the J GraphT library a Java class 

library that provides mathematical graph-theory objects and algorithms, in order to generate a constraint network from 

the attack condition. The constraint network is then passed to the constraint solver to prove the presence/absence of 

vulnerability. Our automata-based and interval constraint solver handles string and integer constraints with 

supported operations, as described in. It is built on top of JSA and Sushi. JSA models a set of Java string/mixed 

operations using finite state automata; Sushi adds supports for string replacement and regular expression 

replacement operations using finite state automaton and transducer operations. In this component, we also defined 

the recipes for additional string operations such as the security APIs provided by two popular security libraries 

(OWASP and Apache). The search-driven constraint solver is invoked when a constraint contains unsupported 

operations.  

We use six different benchmarks, obtained from different sources, to evaluate JOACO: JOACO-Suite, Stranger 

J-Suite, Pisa-Suite, AppScan-Suite, Kausler-Suite, and Cashew-Suite. JOACO-Suite is our homegrown 

benchmark, composed of 11 open-source Java Web applications/services and se- curity benchmark applications 

that have been used in the literature, with known XSS, XMLi, XPathi, LDAPi, and SQLi vulnerabilities. It is an 

extended version of the benchmark used in our previous work enriched with two new applications: Bodgeit and 

OMRS-LUI. WebGoat  and Bodgeit are deliberately insecure Web applications developed for the purpose of 

teaching security vulnerabilities in Web applications. Roller and Pebble are blogging applications that also 

expose Web service APIs. WebGoat, Roller and Pebble have been already used as benchmarks in the 

vulnerability detection literature. Openmrs module legacyui (shortened as OMRS-LUI) [61] is the user interface 

pack- age of Open MRS, a widely used, open-source medical record system that manages highly sensitive 

medical data. Regain is a search engine, known to be used in a production-grade system by one of the biggest 

drugstore chains in Europe. The pubsubhubbub-java (shortened as PSH) tool [64] is the most popular Java project 

related to the PubSubHubbub protocol in the Google Code archive. The rest-auth-proxy (shortened as RAP) 

microservice is one of the most popular LDAP-based Web service Java projects returned by a query on 

Github.com with the search string ldap rest. TPC-APP, TPC-C, and TPC-W are the standard benchmarks 

provided by for evaluating vulnerability detection tools for Web services; the set of Web services they provide 

has been accepted as representative of real environments by the Transactions processing Performance Council, 

this benchmark contains in total 129 paths to sinks (and as many constraints): 86 paths vulnerable to XMLi, 

XPathi, XSS, LDAPi, or SQLi, and 43 non-vulnerable ones. Note that a vulnerable path corresponds to a single 

vulnerability. 

StrangerJ-Suite is a security benchmark distilled from five real-world PHP web applications (MyEasyMarket, 

proMan- ager, PBLguestbook, aphpkb, and BloggIT). It has been used for assessing the effectiveness of the 

stranger tool in the context of automatically detecting and sanitizing security vulnerabilities in PHP Web 

applications. We have manually translated every program of this benchmark from PHP to Java so that we could 

use it in our evaluation. As shown in the bottom part of Table 7, this benchmark contains in total 9 paths which 

are all vulnerable to XSS. PisaSuite contains 12 constraints generated from sanitizers detected by PISA [68]; these 

constraints have been used in the experimental evaluation reported in. AppScan-Suite contains 8 constraints derived 

from the security warnings emitted by IBM Security AppScan, a commercial vulnerability scanner tool, when 

executing on a set of popular websites. 

6. CONCLUSION 

This work addresses the challenge of analyzing the source code of a Java Web application for detecting injection 

vulnerabilities in a scalable and effective way. We have proposed an integrated approach that seamlessly combines 
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static analysis- based security slicing with hybrid constraint solving, that is constraint solving based on a combination 

of automata-based solving and meta-heuristic search (Ant Colony Optimization). We use static analysis to extract 

minimal program slices from Web programs relevant to security and to generate the attack conditions, i.e., conditions 

necessary for the slices to be vulnerable. We then apply a hybrid constraint solving procedure to determine the 

satisfiability of attack conditions and thus detect vulnerabilities. This work addresses the challenge of analyzing the 

source code of a Java Web application for detecting injection vulnerabilities in a scalable and effective way. We 

have proposed an integrated approach that seamlessly combines static analysis-based security slicing with hybrid 

constraint solving, that is constraint solving based on a combination of automata-based solving and meta-

heuristic search (Ant Colony Optimization). We use static analysis to extract minimal program slices from Web 

programs relevant to security and to generate the attack conditions, i.e., conditions neces- sary for the slices to be 

vulnerable. We then apply a hybrid constraint solving procedure to determine the satisfiability of attack 

conditions and thus detect vulnerabilities. 

The experimental results, using a benchmark comprising a set of diverse and representative Web applications/ser- 

vices as well as security benchmark applications, show that our approach (implemented in the JOACO tool) is 

significantly more effective at detecting injection vulnerabilities than state-of-the-art approaches, achieving 98% 

recall, without producing any false alarm. We also compared the constraint solving module of our approach with 

state-of-the- art constraint solvers, using six different benchmarks; our approach correctly solved the highest 

number of constraints (665 out of 672), without producing any incorrect result, and was the one with the least 

number of time-out/failing cases. In both scenarios, the execution time was practically acceptable, given the 

offline nature of vulnerability detection. As part of future work, we plan to extend our integrated vulnerability 

detection approach with support for widely used Java Web frameworks such as Spring. We also plan to 

incorporate dynamic symbolic execution to further enhance our approach. 
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