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ABSTRACT 

This project employs a deep learning-based approach in summarizing large textual material, such as books and 

documents. The system utilizes an encoder-decoder model with Long Short-Term Memory (LSTM) networks, along 

with an attention mechanism to generate abstractive summaries that resemble human-written content. The ultimate goal 

is to generate coherent and meaningful summaries that summarize the original work. The development was underpinned 

by the Agile Scrum methodology, enabling effective collaboration and tracking progress through four well-defined 

sprints. Preprocessing of data, model training, and testing were conducted using a range of tools, including TensorFlow, 

Keras, and NLTK. ROUGE and BLEU scores were used to assess the quality of generated summaries, producing 

promising results. The final model efficiently summarizes long inputs to concise summaries, indicating its potential 

application in the education, research, and publishing sectors. Future improvements include the utilization of 

transformer-based models and the support of multiple languages. 

Keyword: Deep Learning, Abstractive Summarization, LSTM, Attention Mechanism, Agile Scrum, ROUGE, BLEU, 

Text Summarization, Natural Language Processing, Document Summary. 

1. INTRODUCTION 

In this age of excessive information, the amount of text available in formats such as documents, books, articles, and 

reports can often be overwhelming for individuals. The challenge of efficiently extracting pertinent information from 

this plethora of data continues to grow for students, professionals, and researchers at all levels. Manual summarizing 

tends to take a long time, and errors and subjective human reasoning are common. To help with this issue, we proposed 

a project entitled "Document, Books Summarisation through Deep Learning," which elaborates on a smart and scalable 

approach to gaining benefits from artificial intelligence to create concise, coherent summaries from extensive text format 

assets or documents of literature. The main goal of this project is to design and create an intelligent system to summarize 

documents and books content using deep learning approaches using advanced methods in Natural Language Processing 

(NLP). For instance, we plan to implement an Abstractive approach as opposed to the traditional extractive 

summarization, which include selecting sentences from content prescribed. In saying this, we will have a model that 

processes and learns how to create new phrases and sentences to form a summary to present the ideas of the input in a 

humanistic fashion. The intelligent system will accept input in formats of plain text, documents, PDFs, and/or documents 

(which can be retrieved through Optical Character Recognition from a scanned image) and extract valuable and 

meaningful summary that has been established, filtered, and summarized. 

2. METHODOLOGY 

2.1 Agile Scrum Process: 

In order to foster a sustainable and efficient development process, we deployed Agile Scrum as a software 

development methodology for the project. The iterative process allowed the team to break down the tasks into 

smaller segments and improve the system continuously using feedback and collaboration. The entire development 

process was split into four distinct sprints, and each sprint was assigned specific milestones that were crucial to the 

success of the project. 

• Sprint 1: It was about preliminary groundwork, such as finalizing the project title, a thorough literature review, and 

creating a Gantt chart to map the overall timeline and task dependencies. Sprint 1 assisted in defining clear 

objectives and scheduling team responsibilities. 

• Sprint 2: It involved data-related tasks such as discovering and collecting appropriate datasets appropriate for 

training a summarization model. Sprint 2 also involved requisite text preprocessing steps such as cleaning data, 

tokenization, and padding to get the raw input text model-training-ready. 

• Sprint 3: It was the core development phase, where the team built and trained the summarization model. An LSTM 

encoder-decoder model with attention was used, implemented in Python and deep learning libraries like TensorFlow 

and Keras. The phase involved multiple iterations to optimize hyperparameters and improve model performance. 

• Sprint 4: It was focused on model evaluation. The trained model was evaluated with common NLP evaluation 

metrics like ROUGE and BLEU. The final outcome, conclusions, and limitations were also noted in detail. 

 



 

www.ijprems.com 

editor@ijprems.com 

INTERNATIONAL JOURNAL OF PROGRESSIVE 

RESEARCH IN ENGINEERING MANAGEMENT 

AND SCIENCE (IJPREMS) 

(Int Peer Reviewed Journal) 

Vol. 05, Issue 04, April 2025, pp : 1394-1397 

e-ISSN : 

2583-1062 

Impact 

Factor : 

7.001 
 

@International Journal Of Progressive Research In Engineering Management And Science                       | 1395 

There was a designated role for each team member: 

To ensure proper coordination and task management, team roles were assigned according to the Agile Scrum model. 

Every team member was assigned a specific role to enhance responsibility and workflow efficiency. 

• Scrum Master: The Scrum Master facilitated the team, facilitated the sessions, and kept the project on track in 

accordance with the timelines and goals for the sprint. 

• Developers: The developers were responsible for productionizing the deep learning model. They would implement, 

train, and optimize the performance of a LSTM (Long Short-term Memory) based encoder-decoder model with 

attention. 

• Tester: Validate was done by the Tester who ensured that the model outputs were accurate and aligned with 

expectations. They also used evaluation metrics, such as ROUGE and BLEU to assess the model performance. 

• Documenter: The Documenter kept up all of the required documents, such as sprint reports, minutes from meetings, 

technical reports, and the project summary. 

Progress tracking was facilitated through the use of Excel-based sprint backlogs and burndown charts. These 

provided a clear-to-understand visual presentation of work done versus work remaining, facilitating team 

transparency and the capacity to make iterative refinement throughout the project. 

This systematic distribution of tasks and monitoring of progress ensured timely completion and quality delivery of 

each stage of every project. 

2.2 Technical Stack: 

• Programming Language: Python 

• Selected for its simplicity and strong support for machine learning and NLP. 

• •Libraries and Frameworks: 

• TensorFlow and Keras – For designing and training the deep learning model. 

• NLTK (Natural Language Toolkit) -Utilized for text preprocess operations such as tokenization, stop-word deletion. 

• Architectural Framework: 

• The Seq2Seq model uses Long Short-Term Memory (LSTM) networks. 

• Attention mechanism in the decoder to pay attention to contextually appropriate words while generating the 

summary. 

• Dataset: 

• Large documents and public domain books. 

• Preprocessing included lowercasing, punctuation removal, tokenization, and sequence padding. 

2.3 Preprocessing Steps: 

Text data preprocessing is an important process of constructing a correct and effective deep learning model for text 

summarization. Various preprocessing methods were used to pre-process the dataset for model training: 

• Text Cleaning: The unprocessed textual data was replete with various extraneous components, including special 

characters, surplus whitespace, punctuation marks, and stop words, all of which could adversely affect the model’s 

learning efficacy. Consequently, these elements were methodically eliminated to preserve solely the significant 

content for subsequent analysis and summarization. 

• tokenization: The text was subsequently decomposed into single word sequences, which is referred to as 

tokenization. This procedure enables the input text to be split into comprehensible pieces (tokens), thereby allowing 

the model to comprehend and learn patterns and word relations. 

• padding: As neural networks need to receive inputs of fixed length, all of the tokenized sequences were normalized 

with padding in order to ensure that each input had the same number of tokens by either truncating the longer 

sequences or padding the shorter sequences with zero tokens. 

• Vocabulary Limitation: To achieve maximum efficiency in terms of memory use and model training, the 

vocabulary was limited to the most frequent 50,000 vocabulary words from the corpus. This vocabulary limitation 

was intended to prevent the model from being over-populated with single words that were used either infrequently 

or redundantly, while also preventing any potential reduction in critical grammatical features. 

These pre-processing steps were essential to producing clean, consistent, quality input data for the summarization model 

training process. 
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2.4 Model Design: 

The summarization structure used here is a sequence-to-sequence (Seq2Seq) architecture that uses Long Short-Term 

Memory (LSTM) networks. The two key components of the model are an encoder and a decoder. 

The encoder LSTM is the one that reads and is aware of the input text. It reads the input sequence word by word and 

maps it to a fixed-dimensional context vector, which contains semantic information about the entire sequence. The 

encoded representation is used as input to the decoder. 

The decoder LSTM then utilizes this context vector to produce the output sequence, i.e., abstractive summary. However, 

using just a single context vector tends to lose valuable information, particularly for long input sequences. 

To mitigate this constraint, an attention mechanism is incorporated between the encoder and decoder. The attention layer 

selectively emphasizes various segments of the input sequence during the generation of each word in the summary. This 

enables the decoder to "attend" to particular words or phrases in the input that hold the greatest relevance at each stage 

of the generation process. 

This improvement greatly boosts the contextual coherence, relevance, and general quality of the produced summaries, 

making them closer to human writing and semantically accurate. 

3. RESULTS 

The performance of the constructed deep learning model was assessed employing three standard metrics in the natural 

language processing community: ROUGE-1, ROUGE-2, and BLEU. The metrics provide an overall view of the model's 

capacity to generate summaries accurately and fluently compared to human-crafted references. 

Metric Score 

ROUGE-1 0.51 

ROUGE-2 0.39 

BLEU 0.43 

• ROUGE-1 (0.51) estimates the degree of overlap in unigrams (single words) between the machine summary and 

reference summary and, therefore, the model's ability to maintain significant keywords of the original text. 

• ROUGE-2 (0.39) is a measure of recall of bigrams (two-word units), which suggests that the model has the capacity 

to recognize and replicate important phrase-level information from the source. 

• BLEU (0.43) measures fluency, grammar, and overall language structure, showing that the decoder is successful in 

acquiring language rules and producing coherent sentences. 

These findings prove that the attention-based LSTM-based encoder-decoder effectively learns and extracts contextual 

information in the text. The attention 

mechanism dynamically attends to the most important parts of the input sequence at decoding time, producing more 

accurate and informative abstracts. 

3.1 Qualitative Example: 

• Input Excerpt: “The history of medicine began ages ago, before writing was introduced. The early societies 

developed their own way of treating disease, and all those were utilized by subsequent population.” 

• Generated Summary: “ The history of medicine has developed from ancient times, with present-day practices 

drawing upon previous knowledge.” 

• This qualitative result indicates that the model is abstractive. It does not simply copy input sentences but generates 

a short, meaningful abstraction based on context, which indicates that it can abstract and generalize the source 

information well. 

Overall, the evaluation suggests that deep learning, specifically attention-based models, is particularly well-suited 

for summarization tasks. 

4. CHALLENGES FACED 

During the development of our deep learning text summarization model, we encountered a sequence of significant 

challenges that needed to be addressed with care: 

• Extended Input Management: One of the primary issues with standard LSTM models is that they don't handle 

and retain data from extremely lengthy sequences well. This is a significant problem when dealing with long texts 

or large documents, which are common for summarization. To address this, we employed input truncation methods 

to reduce lengthy sequences without sacrificing key details. We also implemented token-level padding to ensure all 

input sizes are equal among training samples, which is crucial for batch processing and model stability. 
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• Overfitting: Since our training data was small, the model initially exhibited overfitting. That is, it performed well 

on the training data but not on novel data. To avoid this, we introduced dropout layers to the LSTM units to randomly 

switch off some neurons during training, thus enabling the model to learn more. In addition, we employed early 

stopping to stop training when the validation loss stopped decreasing. This prevented unnecessary training and 

minimized overfitting. 

• Computational Constraints: Training deep learning models, especially sequence-to-sequence models with 

attention, is computationally intensive. To overcome the constraint of access to hardware, we made use of Google 

Collab, which provides access to free GPUs. We also used batch sizes and adjusted them to operate within available 

memory constraints to encourage training efficiency. 

5. FUTURE WORK 

• Integration of Transformer Models: 

• Use more sophisticated transformer-based models like BERT, GPT, and T5. 

• These architectures have improved language understanding and generate smoother and more accurate summaries. 

• Hybrid Summarization Approach: 

• Combine both extractive and abstractive summarization methods. 

• Improves information retention without compromising on natural language generation. 

• Web-Based Deployment: 

• Deploy the model using web development frameworks such as Streamlit or Flask. 

• Offers users an engaging interface through which they can submit. 

• Multilingual Support: 

• Train the model on multilingual corpora. 

• Allows the system to summarize documents in various languages for broader dissemination. 

• Training on Larger and Diverse Datasets: 

• Allow for more types of documents and more data. 

• Enhances model stability, performance, and generalization across different content spaces. 

6. CONCLUSION 

The project successfully showcased how deep learning models can tackle the real-life problem of automatic text 

summarization with an emphasis on books and long-form documents In utilizing an encoder-decoder deep learning 

architecture based on Long Short-Term Memory coupled with an attention mechanism, we showed how this model could 

produce concise, readable, and coherent summaries that could be classified as a new abstractive summary without loss 

of important content or context for the original text. The development process adopted an orderly approach using the 

Agile Scrum management methodology, which promoted timely and collaborative completion of project stages through 

iterative synchronized work. By organizing the project into four well-defined sprints with specific and defined roles of 

a Scrum Master, Developer, Tester, and Documenter, the team was able to maintain collaborative efforts while delivering 

quality outputs at every stage.  Results from the evaluation phase with ROUGE and BLEU scores showed that the model 

was able to maintain semantic congruence of natural language output that closely approximated summaries created by 

humans. Along with the utilization of preprocessing methods, training methods, and optimization for performance, the 

project was able to avoid many pitfalls such as overfitting, input length, and computational limits. Thus, our project 

provided a framework that illustrates that deep learning can be operationalized with the appropriate design choices and 

project management. 
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