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ABSTRACT 

Placement of students is one of the most important objective of an educational institution. Reputation and yearly 

admissions of an institution invariably depend on the placements it provides it students with. That is why all the 

institutions, arduously, strive to strengthen their placement department so as to improve their institution on a whole. 

Any assistance in this particular area will have a positive impact on an institution’s ability to place its students. This 

will always be helpful to both the students, as well as the institution. In this study, the objective is to analyze previous 

year's student's data and use it to predict the placement chance of the current students. This model is proposed with an 

algorithm to predict the same. Data pertaining to the study were collected form the  same institution for which the 

placement prediction is done and also suitable data pre-processing methods were applied. This proposed model is also 

compared with other traditional classification algorithms such as Decision tree and Random forest with respect to 

accuracy, precision and recall. From the results obtained it is found that the proposed algorithm performs significantly 

better in comparison with the other algorithms mentioned. 
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1. INTRODUCTION 

In recent years, the landscape of campus placements has undergone significant transformation, driven by 

advancements in technology and evolving industry demands. With the advent of machine learning (ML) and data 

analytics, the traditional approach to campus placements has evolved into a more data-driven and predictive process. 

This paradigm shift has empowered educational institutions and recruiters to make informed decisions, optimize 

resources, and enhance the overall placement experience for both students and employers. 

Campus placements prediction and analysis using machine learning entail leveraging historical placement data, 

student profiles, academic performance metrics, and other relevant factors to develop predictive models. These models 

are designed to forecast various outcomes, such as the likelihood of a student getting placed, the salary range they 

might command, the sectors they are likely to be hired in, and other valuable insights. 

Data Collection and Preprocessing: The foundation of any predictive analysis is robust data collection. In the context 

of campus placements, this involves gathering data on students' academic performance, skills, internships, 

extracurricular activities, and demographic information. Additionally, data related to previous placement records, 

recruiter preferences, and industry trends are also crucial. Preprocessing techniques are then applied to clean, 

transform, and normalize the data for further analysis. 

Feature Selection and Engineering: Once the data is collected, relevant features are selected or engineered to extract 

meaningful insights. This step involves identifying the most influential factors that contribute to placement outcomes. 

Features may include academic scores, performance in technical assessments, communication skills, work experience, 

and more. Feature engineering techniques such as one-hot encoding, scaling, and dimensionality reduction are applied 

to prepare the data for model training. Model Development: Various machine learning algorithms such as logistic 

regression, decision trees, random forests, support vector machines, and neural networks are employed to build 

predictive models. These models are trained on historical placement data, with the objective of learning patterns and 

relationships between input features and placement outcomes. Ensemble methods and advanced techniques like 

gradient boosting and deep learning may be utilized to enhance model performance.Model Evaluation and Validation: 

The performance of the predictive models is evaluated using metrics such as accuracy, precision, recall, F1 score, and 

area under the ROC curve (AUC-ROC). Cross-validation techniques are employed to assess model generalization and 

mitigate overfitting. Furthermore, the models are validated using holdout datasets or through real-time testing on 

upcoming placement cycles. Deployment and Integration: Once the predictive models demonstrate satisfactory 

performance, they are deployed into production environments. This involves integrating the models into existing 

placement portals or developing standalone applications for stakeholders' use. The deployed models continuously 

monitor and analyze incoming data to provide real-time predictions and recommendations. 



 

INTERNATIONAL JOURNAL OF PROGRESSIVE 

RESEARCH IN ENGINEERING MANAGEMENT 

AND SCIENCE (IJPREMS) 
 

Vol. 04, Issue 05, May 2024, pp: 643-646 

e-ISSN : 

2583-1062 

Impact 

Factor: 

5.725 
www.ijprems.com 

editor@ijprems.com 
   

@International Journal Of Progressive Research In Engineering Management And Science                Page | 644 

2. METHODOLOGY 

Data Collection: Gather relevant data pertaining to past campus placements. This data may include student profiles 

(such as academic performance, skills, and extracurricular activities), company profiles (recruitment history, job roles 

offered), and placement outcomes (whether students were placed or not). 

Data Cleaning: Handle missing values, outliers, and inconsistencies in the dataset. 

Feature Engineering: Create new features or transform existing ones to improve the model's performance. This could 

involve converting categorical variables into numerical representations (one-hot encoding), scaling features, or 

extracting meaningful information from raw data. 

Feature Selection: Identify the most relevant features that contribute to the prediction task. Techniques like 

correlation analysis, feature importance scores, or domain knowledge can aid in feature selection. 

Splitting Data: Divide the dataset into training and testing sets. Typically, a large portion of the data (e.g., 70-80%) is 

used for training, while the remainder is reserved for testing the model's performance. 

Model Selection: Choose appropriate machine learning algorithms suited for the prediction task. Common algorithms 

for classification tasks like campus placement prediction include Decision Trees, Random Forest, Support Vector 

Machines (SVM), Logistic Regression, and Gradient Boosting Machines. 

Experiment with multiple algorithms to compare their performance and select the best-performing one(s). 

Model Training: Train the selected machine learning model(s) on the training dataset. During training, the model 

learns patterns and relationships between input features and placement outcomes. 

Model Evaluation: Evaluate the trained model(s) using the testing dataset to assess their predictive performance. 

Common evaluation metrics for classification tasks include accuracy, precision, recall, F1-score, and area under the 

ROC curve (AUC-ROC). 

Hyperparameter Tuning: Fine-tune the model's hyperparameters to optimize its performance. Techniques like grid 

search or random search can be employed to search through a range of hyperparameter values. 

Cross-Validation: Perform cross-validation to ensure the model's generalization ability and robustness. Techniques 

like k-fold cross-validation split the data into multiple folds, training the model on different subsets and evaluating its 

performance on unseen data. 

Model Interpretation: Interpret the model's predictions to gain insights into the factors influencing campus 

placements. Techniques like feature importance analysis or SHAP (SHapley Additive exPlanations) values can help 

understand the model's decision-making process. 

Deployment: Once satisfied with the model's performance, deploy it for real-world use. This may involve integrating 

the model into an application or system where it can make predictions on new data. 

Monitoring and Maintenance: Continuously monitor the model's performance in production and update it as needed to 

adapt to changes in data distributions or business requirements. 

3. MODELING AND ANALYSIS 

Algorithms used :  

1. Logistic Regression 

2. XGBoost 

3.navie bayes classifier 

1. Logistic Regression (Binary classification) 

Logistic regression is a common statistical method used in predicting binary outcomes, such as whether or not a 

person will be placed in a job after completing a training program. To use logistic regression for placement prediction, 

we typically started by collecting data on individuals who have completed the training program, including information 

such as their education level, work experience, and performance in the training program. To make predictions using 

the logistic regression model,we simply input the values of the predictors for a new individual and the model would 

output the estimated probability of that individual being placed in a job. If the probability is above a certain threshold 

(e.g., 50%), the system would predict that the individual will be placed in a job; otherwise, not 

2. XGBoost (eXtreme Gradient Boosting) 

XGBoost is a popular machine learning algorithm that can be used for multiclass classification problems,  including 

predicting the package range of students in campus placement based on their performance and other  parameters. 

Here's a high-level overview of problem solving approach using XGBoost: 
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1) Data Preparation: Collected data on students' academic performance, skills, work experience, and other relevant 

parameters. Preprocessing the data by handling missing values, handling outlier, encoding categorical variables, 

and scaling numerical variables. 

2) Feature Selection: Identify the most important features that are highly correlated with the target variable (i.e., 

package range). You can use techniques such as correlation analysis, mutual information, or feature importance 

ranking provided by XGBoost. 

3) Train-Test Split: Split the data into training and testing sets. Typically,80-20 split is used. 

4) XGBoost Model Training: Train an XGBoost classifier on the training data. XGBoost is a gradient boosting 

algorithm that builds an ensemble of decision trees iteratively to minimize the loss function (e.g., softmax for 

multiclass classification). 

5) Hyperparameter Tuning: Optimize the hyperparameters of the XGBoost model using techniques such as grid 

search or random search. Important hyperparameters include the learning rate, number of trees, maximum depth, 

and regularization parameters. 

6) Model Evaluation: Evaluate the performance of the XGBoost model on the testing data using metrics such as 

accuracy, precision, recall, F1-score, and confusion matrix. You can also visualize the feature importance and 

decision boundaries of the model. 

7) Deployment: Model is packaged into joblib file and further used in flask API. Here , Comparison of the 3 

Algorithms for multiclass classification is done through which the best one is selected. 

1. LogisticRegression 

2. Random Forest 

3. XGBoost 

4. NAIVE BAYES CLASSIFIER 

Data Preparation: Gather data related to campus placements, including attributes such as academic performance 

(GPA, scores in specific subjects), skills (programming languages, communication skills), extracurricular activities, 

internships, and any other relevant information. This data should include both features (attributes) and the target 

variable (placement outcome, such as 'placed' or 'not placed'). 

Data Preprocessing: Preprocess the data to handle missing values, encode categorical variables, and scale numerical 

features if necessary. This step ensures that the data is in a suitable format for training the Naive Bayes classifier. 

Training the Naive Bayes Classifier: Split the data into training and testing sets. Use the training set to train the 

Naive Bayes classifier. Naive Bayes assumes that the features are conditionally independent given the class label, 

which simplifies the probability calculations. Train the classifier using the training data, where it learns the probability 

distributions of features given the class labels (placed or not placed). 

Model Evaluation: After training the classifier, evaluate its performance on the testing set using appropriate 

evaluation metrics such as accuracy, precision, recall, and F1-score. These metrics help assess how well the classifier 

predicts the placement outcomes based on the given features. 

Interpretation and Feature Importance: Naive Bayes classifier provides probabilities for each class label given the 

input features. Analyze these probabilities to understand the importance of different features in predicting placement 

outcomes. Features with higher probabilities for a particular class label are more influential in determining that label. 

Model Optimization (Optional): Depending on the performance of the classifier, you may explore model 

optimization techniques such as hyperparameter tuning or feature selection to improve its predictive accuracy. 

Deployment and Monitoring: Once the Naive Bayes classifier is trained and evaluated satisfactorily, it can be 

deployed for making predictions on new data. Monitor the model's performance over time and update it as necessary 

to maintain its accuracy and relevance. 

5. RESULTS AND DISCUSSION 

Table 1. Comparison of Algorithms 

Algorithm Precision Recall f1-score Accuracy 

Logistic Regression 0.522 0.522 0.522 0.522 

Random Forest 0.8190 0.819 0.819 0.819 

XGBoost 0.831 0.831 0.831 0.831 
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Navie bayes classifier 0.912 0.912 0.912 0.912 

6. CONCLUSION 

In this way, logistic regression from a machine learning method in predicting the campus placement of students  

based on his/her performance in academics and other skills and exams. The model is trained using the previous  

year's data like students marks in all semesters, personal interests, internships, other activities, etc. 

The limitations of the Project is that the student should not do any malpractice while appearing for the general  

aptitude exams which we have asked them to solve, in order to test their knowledge and he/she should fill in  

their correct academic details . 

This seminar report is undertaken to explain machine learning prediction approaches and improve the  

efficiency of Machine Learning Model to predict the campus placement of students. 
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