
 

INTERNATIONAL JOURNAL OF PROGRESSIVE 

RESEARCH IN ENGINEERING MANAGEMENT  

AND SCIENCE (IJPREMS) 

 

Vol. 03, Issue 06, june 2023, pp : 1408-1411 

e-ISSN : 

 2583-1062 

Impact 

  Factor : 

5.725 
www.ijprems.com 

editor@ijprems.com 
 

@International Journal Of Progressive Research In Engineering Management And Science               Page | 1408  

SUPPORTING DNN SAFETY ANALYSIS AND RETRAINING USING 

UNSUPERVISED LEARNING 

Prof. Sneha A. Khaire1, Ketan Dhole2, Sarika Bhingane3, Ruthik Wankhede4,  

Kunal Kshirsagar5 
1Assistant Professor, Department of Information Technology, Sandip Institute of Technology and Research 

Centre, College of Engineering, Nashik - 422213 

2,3,4,5BE Students, Department of Information Technology, Sandip Institute of Technology and Research 

Centre, College of Engineering, Nashik - 422213 

DOI: https://www.doi.org/10.58257/IJPREMS31567 

ABSTRACT 

The development of deep neural networks (DNNs) has greatly advanced the field of artificial intelligence, but their use 

in safety-critical applications such as autonomous driving, medical diagnosis, and financial forecasting requires rigorous 

analysis and verification to ensure their reliability and trustworthiness. In this context, unsupervised learning has 

emerged as a promising technique for supporting DNN safety analysis and retraining, by enabling the detection of 

anomalies, errors, and biases in the input data, as well as the identification of data-driven features and representations 

that can enhance the generalization and robustness of the model. This paper presents an overview of the recent research 

on unsupervised learning methods for DNN safety, including autoencoders, generative models, clustering, and outlier 

detection, and their applications in detecting adversarial attacks, handling missing data, improving fault tolerance, and 

mitigating dataset bias. We also discuss the challenges and opportunities of incorporating unsupervised learning into 

the DNN development pipeline and highlight the need for further research and standardization to ensure the scalability, 

interpretability, and reproducibility of these methods. 
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1. INTRODUCTION  

Deep neural networks (DNNs) have made significant advancements in various domains, including image recognition, 

natural language processing, and decision-making systems. However, the widespread adoption of DNNs in safety-

critical applications necessitates careful analysis and retraining to ensure their reliability and trustworthiness. Safety 

concerns arise due to potential vulnerabilities, biases, and adversarial attacks that can compromise the performance and 

robustness of DNN models. Unsupervised learning techniques have emerged as a promising approach to address these 

concerns and enhance DNN safety analysis and retraining. Traditional supervised learning relies on labeled data, where 

each input sample is associated with a corresponding output label. While supervised learning has proven successful, it 

requires large amounts of labeled data, which can be expensive and time-consuming to acquire, especially in safety-

critical domains. Unsupervised learning, on the other hand, offers an alternative by leveraging unlabeled data to identify 

underlying patterns, structures, and anomalies within the data. The main objective of using unsupervised learning in the 

context of DNN safety analysis and retraining is twofold. Firstly, it aims to enhance the understanding of the input data 

distribution and identify potential outliers or abnormal patterns that may adversely affect the DNN's performance. 

Secondly, it facilitates the identification of data-driven features and representations that can improve the DNN's 

generalization and robustness. This paper provides an overview of the research and developments in using unsupervised 

learning techniques for supporting DNN safety analysis and retraining. We discuss various methods such as 

autoencoders, generative models, clustering, and outlier detection, and their applications in detecting adversarial attacks, 

handling missing data, improving fault tolerance, and mitigating dataset bias. By incorporating unsupervised learning 

into the DNN development pipeline, it is possible to identify and address potential safety issues proactively. Moreover, 

unsupervised learning methods can aid in identifying biases and enhancing fairness in DNN models, making them more 

reliable and trustworthy across diverse user populations. However, there are challenges and opportunities associated 

with the integration of unsupervised learning into DNN safety analysis. These include interpretability of unsupervised 

models, scalability to large-scale datasets, and the need for standardization to ensure reproducibility and comparability 

of results. Addressing these challenges will be crucial to promote the adoption of unsupervised learning techniques in 

the development of safe and reliable DNNs. In summary, this paper aims to highlight the significance of unsupervised 

learning in supporting DNN safety analysis and retraining. We provide insights into the various methods and 

applications, discuss the challenges, and emphasize the need for further research and standardization in this evolving 

field. By harnessing the power of unsupervised learning, we can enhance the safety and reliability of DNNs in critical 

applications, paving the way for their widespread adoption. 
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2. METHODOLOGY 

The methodology for supporting DNN safety analysis and retraining using unsupervised learning typically involves 

several steps. Here is a generalized methodology that can be followed: 

• Data Preprocessing: Prepare the dataset for unsupervised learning by cleaning, normalizing, and transforming the 

data as required. This step ensures that the data is in a suitable format for the unsupervised learning algorithms. 

• Feature Extraction: Extract meaningful features from the dataset to capture the essential characteristics of the 

input data. This step helps in representing the data in a more compact and informative manner, facilitating 

subsequent analysis. 

• Unsupervised Learning: Apply unsupervised learning algorithms to the preprocessed dataset. Common 

unsupervised learning techniques include clustering algorithms (e.g., k-means, hierarchical clustering) and 

dimensionality reduction methods (e.g., PCA, t-SNE). These algorithms can reveal patterns, structures, and 

relationships in the data without relying on labeled examples. 

• Anomaly Detection: Utilize unsupervised learning for anomaly detection to identify unexpected or abnormal 

patterns in the data. Anomalies can indicate potential safety risks or vulnerabilities in the DNN model. Techniques 

such as density-based clustering, one-class SVM, or autoencoders can be employed for anomaly detection. 

• Bias Detection and Mitigation: Analyze the learned representations and latent features to identify biases in the 

data or model behavior. Unsupervised learning can help in uncovering unintended biases that might affect the 

fairness and reliability of the DNN model. Once biases are detected, appropriate mitigation techniques can be 

applied, such as debiasing algorithms or data augmentation strategies. 

• Adversarial Defense: Use unsupervised learning to detect and understand adversarial perturbations. Adversarial 

attacks aim to manipulate the model's decision-making process by introducing carefully crafted inputs. 

Unsupervised techniques can help in identifying abnormal patterns or perturbations in the input space, enabling the 

development of robust defenses against adversarial attacks. 

• Retraining and Improvement: Incorporate the insights gained from the unsupervised analysis into the retraining 

process. The identified anomalies, biases, and adversarial vulnerabilities can guide the selection and generation of 

new training samples. This process aims to improve the model's robustness, generalization, and safety by retraining 

with the enhanced dataset. 

• Evaluation and Validation: Evaluate the performance of the retrained model using appropriate metrics and 

validation techniques. This step ensures that the model's safety, reliability, and generalization capabilities have 

improved after the application of unsupervised learning techniques. 

It is worth noting that the specific implementation details and choice of algorithms may vary depending on the specific 

application and problem domain. Additionally, the methodology should be complemented with other techniques, such 

as supervised learning, formal verification, and extensive testing, to ensure a comprehensive approach to DNN safety 

analysis and retraining. 

 

Figure 1: Workflow of proposed system 
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3. MODELING AND ANALYSIS 

There are various important factors to consider when modelling and analysing data to facilitate DNN safety analysis 

and retraining utilizing unsupervised learning. The DNN error root causes can be found using the HUDD tool, which 

also supports safety analysis. Additionally, it can retrain DNNs more successfully than current methods. Another method 

to enable DNN safety assessments and retraining is heatmap-based unsupervised learning. There has been little 

advancement in automated functional safety analysis assistance for DNN-based systems. HUDD has various restrictions, 

such as the fact that it can only evaluate DNN implementations that have been extended to compute LRP. In order to 

enable DNN safety analysis and retraining, heatmap-based unsupervised learning techniques look for scenarios that are 

underrepresented in the test set and may pose substantial risks that could result in DNN errors. These techniques can 

also create fictitious data to enhance the performance of the DNN and pinpoint the most crucial input qualities that cause 

problems. DNNs may be retrained more successfully utilizing these techniques, which will increase their precision and 

security in safety-critical systems. 

4. RESULTS AND DISCUSSION 

Screenshots of the system: 

 

Figure 2: Opening Window 

 

Figure 3: Registration 

  

Figure 4: Start 

 

Figure 5: Center 
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Figure 6: Left     

 

Figure 7: Right 

5. CONCLUSION 

In conclusion, a viable strategy to increase the dependability and robustness of artificial intelligence systems is to 

facilitate deep neural network (DNN) safety analysis and retraining utilizing unsupervised learning techniques. 

Machine learning models are trained on unlabeled data through the process of "unsupervised learning," which enables 

them to find patterns and structures in the data without having to be explicitly supervised. This strategy has various 

advantages for DNN safety analysis and retraining. It's crucial to keep in mind, though, that unsupervised learning might 

not be enough on its own for thorough DNN safety analysis and retraining. To ensure a comprehensive approach to AI 

safety, it should be used in conjunction with other strategies and approaches including supervised learning, formal 

verification, and thorough testing. The reliability, robustness, and security of AI systems can be greatly improved by 

providing DNN safety analysis and retraining utilizing unsupervised learning approaches. We may strengthen 

generalization abilities, get deeper understanding of model behavior, and create stronger defenses against adversarial 

attacks by utilizing the potential of unsupervised learning. Unsupervised learning must, however, be used in conjunction 

with other methods to ensure a thorough and accurate assessment of the security of AI systems. 
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