
 

INTERNATIONAL JOURNAL OF PROGRESSIVE 

RESEARCH IN ENGINEERING MANAGEMENT  

AND SCIENCE (IJPREMS) 

 

Vol. 03, Issue 06, June 2023, pp : 91-95 

e-ISSN : 

 2583-1062 

Impact 

  Factor : 

5.725 
www.ijprems.com 

editor@ijprems.com 
 

@International Journal Of Progressive Research In Engineering Management And Science                  Page | 91  

A REVIEW OF TRADITIONAL SIMILARITY BASED LINK PREDICTION 

METHODS IN COMPLEX NETWORKS 

Nirmaljit Singh1 

1Research Scholar, Sant Baba Bhag Singh University, Jalandhar india 

ABSTRACT 

Link prediction is a fundamental task in network analysis, aiming to infer missing or future connections between 

nodes. Numerous link prediction techniques have been proposed, each offering unique insights and methodologies. In 

this review paper, we comprehensively compare and evaluate five popular link prediction techniques: Common 

Neighbors, Adamic Adar, Jaccard Index, Preferential Attachment, and Resource Allocation. Through a comprehensive 

comparison, we discuss the advantages and limitations of each technique, shedding light on their suitability for 

different network scenarios. We examine their performance in real-world applications, such as social networks, 

biological networks, and recommendation systems. Moreover, we discuss the potential for future research and 

improvements in link prediction algorithms. By providing a comprehensive review of these link prediction techniques, 

we aim to assist researchers, practitioners, and enthusiasts in selecting the most appropriate method for their specific 

network analysis tasks. Understanding the nuances and trade-offs of these techniques is crucial for advancing link 

prediction in complex networks. 

Keywords:  Link prediction, Common Neighbors, Adamic Adar, Jaccard Index, Preferential Attachment, Resource 

Allocation   

1. INTRODUCTION  

Link prediction is a fundamental problem in network analysis that involves predicting missing or future connections 

between nodes based on observed interactions. It plays a crucial role in understanding network structure, uncovering 

hidden relationships, and making informed predictions about network dynamics. Over the years, numerous link 

prediction techniques have been proposed, each offering distinct approaches to address this challenging task 

2.  LITERATURE REVIEW 

[1]. In this review paper, we provide a comprehensive analysis and comparison of five popular link prediction 

techniques: Common Neighbors, Adamic Adar, Jaccard Index, Preferential Attachment, and Resource Allocation. 

These techniques have gained significant attention in the research community due to their effectiveness and 

applicability in a wide range of network analysis tasks. The Common Neighbors method [1] focuses on the intuition 

that nodes with more shared neighbors are more likely to form links. It counts the number of common neighbors 

between two nodes and assumes that higher overlap indicates a higher probability of link formation. Adamic Adar [2] 

builds upon this concept by assigning higher weights to shared neighbors with lower degree centrality, considering the 

significance of connections to less connected nodes. The Jaccard Index[3] calculates the ratio of the number of 

common neighbors to the total number of distinct neighbors, providing a measure of similarity between nodes. 

Preferential Attachment 

[1], on the other hand, predicts links based on the assumption that popular nodes, i.e., nodes with higher degrees, are 

more likely to attract new connections. Finally, the Resource Allocation method 

[4] incorporates centrality measures to assess the importance of shared connections, redistributing resource scores 

from neighbors to measure similarity. we aim to compare and evaluate these link prediction techniques 

comprehensively. We analyze their underlying principles, calculation methods, strengths, limitations, and applications. 

Through empirical studies, real-world examples, and benchmark datasets, we assess their performance and provide 

insights into their effectiveness in different network contexts. Furthermore, we discuss the implications and trade-offs 

associated with each technique, highlighting their relevance and suitability for various network analysis tasks.  

The findings of this review paper will be beneficial for researchers, practitioners, and enthusiasts in selecting 

appropriate link prediction techniques for their specific applications.  

By understanding the nuances and comparative performance of these methods, researchers can make informed choices 

and advance link prediction in diverse domains such as social networks, biological networks, recommendation 

systems, and more. Overall, this review aims to provide a comprehensive understanding of the strengths and 

limitations of the Common Neighbors, Adamic Adar, Jaccard Index, Preferential Attachment, and Resource 

Allocation techniques, facilitating further advancements in link prediction algorithms and fostering their practical 

applications in complex network analysis. 
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3. COMPARISON 

STRENGTH AND WEAKNESSES OF TRADITIONAL TECHNIQUES 

The pros and cons of various traditional and popular link prediction techniques are as follows: 

Common Neighbors: The Common Neighbors method [1] has several strengths. Firstly, it is a simple and intuitive 

method that is easy to understand and implement. Secondly, it has computational efficiency, making it suitable for 

large-scale networks. Thirdly, it tends to perform well in scenarios with dense networks, where the number of 

common neighbors between nodes is a good indicator of potential links. However, the Common Neighbors method 

also has weaknesses. It tends to have limited performance in sparse networks where shared neighbors are less 

common. Additionally, it ignores the quality of shared neighbors, treating all common neighbors equally. Lastly, the 

method is susceptible to the "hub" effect, where nodes with high degrees dominate the prediction, potentially leading 

to inaccurate results. 

Adamic Adar:  

The Adamic Adar method [2]  has strengths that address some of the limitations of the Common Neighbors method. It 

considers the significance of connections to less connected nodes by assigning higher weights to shared neighbors 

with lower degree centrality. This approach allows for the identification of rare and valuable connections in the 

network. Furthermore, the Adamic Adar method is more robust against the "hub" effect compared to Common 

Neighbors. However, it also has weaknesses. It may be less effective in scenarios where highly connected nodes 

dominate the network. Additionally, the method requires knowledge of node degrees, which may not always be 

available. Moreover, there is a possibility that the Adamic Adar method assigns disproportionate importance to low-

degree nodes, potentially affecting the accuracy of predictions. 

Jaccard Index: 

The Jaccard Index[3]  provides a similarity-based measure for link prediction. It has strengths such as capturing the 

local neighborhood structure effectively and handling sparsity better than the Common Neighbors method. By 

considering the ratio of the number of common neighbors to the total number of distinct neighbors, the Jaccard Index 

can provide a measure of similarity between nodes. However, it also has limitations. Like the Common Neighbors 

method, it does not consider the quality of shared neighbors. It can still be affected by the "hub" effect, where nodes 

with high degrees dominate the prediction. Therefore, it may not be suitable for all network scenarios. 

Preferential Attachment:  

The Preferential Attachment method [1] has strengths rooted in the concept of popularity. It predicts links based on the 

assumption that popular nodes, i.e., nodes with higher degrees, are more likely to attract new connections. This 

approach captures the preferential growth mechanism observed in many real-world networks. However, it has 

limitations. The method does not consider any structural similarity between nodes and relies solely on the node degree 

distribution. It may not be suitable for networks where preferential attachment does not play a significant role or when 

considering additional factors beyond node popularity is crucial for accurate predictions. 

Resource Allocation:  

The Resource Allocation [4] method incorporates centrality measures into link prediction. By redistributing resource 

scores from neighbors to measure similarity, it considers the importance of shared connections in the network. This 

approach allows for the identification of nodes with similar network roles or positions. However, the method also has 

limitations. It requires the computation of centrality measures for all nodes, which can be computationally expensive 

for large networks. Additionally, the method assumes that resource allocation accurately reflects the likelihood of link 

formation, which may not always hold true in real-world scenarios. 

Here's a table 1 comparing the five link prediction techniques: Common Neighbors, Adamic Adar, Jaccard Index, 

Preferential Attachment, and Resource Allocation.  

Table 1: Attribute comparison of different LP methods 

Link Prediction 

Technique Strengths Weaknesses 

Common Neighbors - Simple and intuitive method - Limited performance in sparse networks 

 
- Computational efficiency - Ignores the quality of shared neighbors 
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- Emphasizes rare and valuable 

connections 

- Potential disproportionate importance given 

to low-degree nodes 

Jaccard Index - Provides a similarity-based measure 

- Does not consider the quality of shared 

neighbors 

 

- Handles sparsity better than Common 

Neighbors - Can still be affected by the "hub" effect 

 
Captures local neighborhood structure 

 

Preferential 

Attachment - Captures preferential growth mechanism 

- Does not consider structural similarity 

between nodes 

 
- Considers node popularity 

- Limited applicability in networks without 

preferential attachment 

Resource Allocation - Incorporates centrality measures 

- Computationally expensive for large 

networks 

 
- Identifies nodes with similar roles 

- Assumes resource allocation accurately 

reflects link likelihood 

It's important to note that this table provides a general overview of the strengths and weaknesses of each technique, 

but the suitability of a specific technique will depend on the characteristics of the network and the research context 

4. OTHER IMPORTANT EVALUATING MEASURES 

In addition to the strengths and weaknesses, several other points can be compared when evaluating and comparing link 

prediction techniques [9, 11, 14]: 

1. Computational Complexity: Compare the computational requirements of each technique, including time 

complexity and memory usage. This is especially important when dealing with large-scale networks. 

2. Data Requirements: Assess the data requirements for each technique, such as the need for node attributes, edge 

weights, or additional network information. Consider the availability and accessibility of such data. 

3. Scalability: Evaluate the scalability of each technique, particularly in terms of network size and the ability to 

handle increasing data volumes. Consider whether the technique can efficiently handle large and dynamic 

networks. 

4. Robustness: Assess the robustness of each technique to noise, missing data, or perturbations in the network 

structure. Determine how well the technique performs in the presence of such challenges. 

5. Predictive Accuracy: Measure the predictive accuracy of each technique through appropriate evaluation metrics 

such as precision, recall, F1-score, or area under the receiver operating characteristic curve (AUC-ROC). 

Compare their performance on benchmark datasets or real-world network examples. 

6. Sensitivity to Network Characteristics: Evaluate how each technique performs across different types of networks, 

such as social networks, biological networks, or technological networks. Consider whether the technique is 

sensitive to network properties like density, degree distribution, or community structure. 

7. Interpretability: Consider the interpretability of the technique. Some techniques provide easily interpretable 

measures, while others may require more complex interpretations or have less transparent mechanisms. 

8. Applicability to Various Domains: Assess the applicability of each technique to different domains or applications, 

such as social network analysis, recommendation systems, biological network analysis, or information retrieval. 

Consider the specific requirements and characteristics of the domain. 

 
- Effective in dense networks - Susceptible to the "hub" effect 

Adamic Adar 

- Considers connections to less 

connected nodes 

- Less effective in highly connected 

networks 

 
- Robust against the "hub" effect - Requires knowledge of node degrees 
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9. Extensibility and Adaptability: Consider the potential for extending or adapting the technique to address specific 

research questions or incorporate additional factors or features. 

10. Computational Implementation: Evaluate the availability of software packages or libraries that provide 

implementations of the techniques. Consider the ease of use and availability of code or tools to facilitate practical 

applications. 

By considering these additional points of comparison, researchers can gain a more comprehensive understanding of 

the strengths, limitations, and suitability of different link prediction techniques for their specific research or 

application needs. 

5. CONCLUSION 

Determining the best link prediction technique depends on various factors such as network characteristics, data 

availability, and the specific research or application context. Each of the link prediction techniques discussed 

(Common Neighbors, Adamic Adar, Jaccard Index, Preferential Attachment, and Resource Allocation) has its 

strengths and weaknesses, making them suitable for different scenarios.Common Neighbors can be effective in dense 

networks where the number of shared neighbors is a good indicator of link formation. Adamic Adar performs well in 

scenarios where connections to less connected nodes are deemed significant, and it is more robust against the "hub" 

effect. The Jaccard Index is suitable for capturing similarity-based link formation, particularly in sparser networks. 

Preferential Attachment is effective when the popularity of nodes plays a significant role in link formation. Resource 

Allocation incorporates centrality measures and can be valuable for identifying nodes with similar network roles. To 

determine the best technique, researchers and practitioners should consider the specific characteristics of their network 

and the research objectives. [19] For example, if the network is dense and common neighbors play a crucial role, 

Common Neighbors might be a good choice. If the focus is on identifying rare and valuable connections, Adamic 

Adar can be more appropriate. If similarity-based link prediction is desired, the Jaccard Index might be the preferred 

choice. In some cases, combining multiple techniques or using hybrid approaches can yield more accurate predictions. 

Hybrid methods can leverage the strengths of different techniques and provide more robust link predictions. It is 

important to note that the selection of the best technique is not definitive, and it may vary depending on the specific 

context and research goals. Therefore, researchers should carefully evaluate the strengths and weaknesses of each 

technique and consider how they align with the particular characteristics and requirements of their network analysis 

task. 

6. FUTURE SCOPE OF RESEARCH  

Despite the strengths of these link prediction techniques, there is still scope for further research and improvement. 

Some areas that warrant attention include: 

• Developing hybrid approaches that combine multiple techniques to leverage their complementary strengths [10]. 

• Considering temporal aspects and dynamic network characteristics for more accurate predictions in evolving 

networks. 

• Exploring the impact of community structure and homophily in link prediction to account for the presence of 

tightly knit groups and similarity-driven connections. 

Investigating the robustness and generalizability 
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