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ABSTRACT 

In this paper, the issue of statistical convergence was tackled in a more general context than the usual one, when the 

underlying space is a g-metric-like space. As will treated later. The main focus will be on this sort of generalized 

topological structures, which generalize classic metric spaces, maintaining sound analytical properties. The concept of 

statistical convergence for these topological spaces was modified. In the material that precedes, the content was initiated 

with a brief introduction of g-metric-like spaces and some of the topological properties that they have. Eventually, to 

expand a point of view, an idea of sequences in g-metric-like spaces that are statistically convergent was thoroughly 

discussed. The fundamental interpretations are included in this new structure with some concrete definitions provided. 

The main findings of Tang and Salman include the following: 

1. Defining and studying statistical convergent sequence in g-metric-like spaces. 

2. Giving characterization and criteria of statistical convergence in g-metric-like spaces. 

3. Analysis of statistical Cauchy sequences and the relation between statistical Cauchy sequences and statistical 

convergence in g-metric-like spaces. 

4. Studying statistical limit points, statistical cluster points, and statistical cluster points. 

Furthermore, a few theorems are considered that extend known results from metric spaces to g-metric-like spaces, 

indicating a broader relevance of statistical convergence in more general frameworks. Possible applications in fixed 

point theory are introduced as well as future research directions in the area. The present work is fundamental to further 

study of statistical convergence in abstract spaces as well as a contribution to the increasing literature on generalized 

topologies. 

1. INTRODUCTION  

Preliminaries 

The whole process of generalizing the idea of distance function is a broad field of study [1,12]. The G-metric-like space 

is another way to generalize the idea of metric which Mustafa [14] proposed. The metrics here measure the distance 

between three points. For a more generalization, Este Choi et al. [2] proposed a g-metric with degree n, and then a 

distance between n + 1 points. In this paper, the topological properties of the g-metric-like space will be discussed with 

a convergence of sequences and extended to statistical forms. The idea of statistical convergence was first expressed in 

1935 by Zygmund [18]. The formal concept of statistical convergence was introduced by Steinhaus [17] and Fast [8] in 

1951. Afterward, Shoenberg reintroduced it in 1959 [16]. 

Since then, numerous mathematicians have studied statistical convergence and it has also been applied in different areas 

such as approximation theory [7], trigonometric series [18], set functions that are finitely additive [4], Stone-Chech 

compactification [5], Banach spaces [6], probability theory [9], and summability theory [3,10,11,15]. The primary goal 

of this paper is to give the definition of a statistically convergent sequence and provide its properties in g-metric-like 

spaces. We will give some basic concepts which are required in the following sections. 

Definition 2.1: Let x be a nonempty set and G: X x X x X →R be a function satisfying: 

1) 𝐺(𝑥, 𝑦, 𝑧) = 0 if 𝑥 = 𝑦 = 𝑧, 

2) 0 < 𝐺(𝑥, 𝑥, 𝑦);for all 𝑥, 𝑦 ∈ 𝑋,with 𝑥 ≠ 𝑦, 

3) 𝐺(𝑥, 𝑥, 𝑦) ≤ 𝐺(𝑥, 𝑦, 𝑧), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥, 𝑦, 𝑧 ∈ 𝑋 with 𝑧 ≠ 𝑦, 

4) 𝐺(𝑥, 𝑦, 𝑧) = 𝐺(𝑥, 𝑧, 𝑦) = 𝐺(𝑦, 𝑧, 𝑥) = ⋯, (symmetry in all three variables), 

5) 𝐺(𝑥, 𝑦, 𝑧) ≤ 𝐺(𝑥, 𝛼, 𝛼) + 𝐺(𝛼, 𝑦, 𝑧), for all 𝑥, 𝑦, 𝑧, 𝛼 ∈ 𝑋,(rectangle inequality) 

The function G is called a generalized metric or G-metric on X, and the pair (𝑋, 𝐺) is a G-metric Space. 

The following definition is an extension of the above space with degree 1 ∈ 𝑁. 

Definition 2.2: [2] Let X be a nonempty set. A function g:𝑋1+1 → 𝑅+ is called a g-metric 

With 1 𝜖 𝑁  in 𝑋 if it satisfies the following: 

g1)  𝑔(𝑥𝑜, 𝑥1, … , 𝑥𝑙) = 0  if and only if 𝑥0 = 𝑥1 = ⋯ = 𝑥𝑙 , 

g2)   𝑔(𝑥0, 𝑥1, … , 𝑥𝑙) = 𝑔(𝑥0(0),𝑥0(1),…,𝑥0(𝑙)), for per mulayi on σ on {0,1, … , 𝑙}, 
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g3)  𝑔(𝑥0, 𝑥1, … , 𝑥𝑙) ≤ 𝑔(𝑦0, 𝑦1 , … , 𝑦𝑙), 𝑓𝑜𝑟 𝑎𝑙𝑙 (𝑥0, 𝑥1, … , 𝑥𝑙), (𝑦0 , 𝑦1, … , 𝑦𝑙) ∈ 𝑥1+1 

with {𝑥𝑖: 𝑖 = 0,1, … , 𝑙} ⊆ {𝑦𝑖 : 𝑖 = 0,1, … 𝑙}, 

g4)  For all 𝑥0, 𝑥1, … , 𝑥𝑠 , 𝑦0, 𝑦1 , … , 𝑦𝑡 , 𝑤 ∈ 𝑋 𝑤𝑖𝑡ℎ 𝑠 + 𝑡 + 1 = 𝑙, 

g(𝑥0, 𝑥1, … 𝑥𝑠 , … , 𝑥𝑠 , 𝑦0, 𝑦1, … 𝑦𝑡) ≤ 𝑔(𝑥0, 𝑥1, … , 𝑥𝑠, 𝑤1 , 𝑤, … 𝑤) 

+𝑔(𝑦0 , 𝑦1, … 𝑦𝑡 , … , 𝑤, 𝑤, … , 𝑤). 

The pair (𝑋, 𝑔) is called a g-metric space with degree l. It is noteworthy that if 1 (𝑟𝑒𝑠𝑝.  𝑙 = 2), then it is equivalent to 

ordinary metric space (G-metric space). 

The following theorem will be needed in the main results. 

Theorem 2.1: [2] Let g be a g-metric with degree 1 on a nonempty set X, then the following 

Is true: 

1) g(𝑥, … 𝑥, 𝑦, … , 𝑦) ≤ 𝑔(𝑥, … , 𝑥, 𝑤, … , 𝑤) + 𝑔(𝑤, … , 𝑤, 𝑦, … 𝑦), 

2) g(𝑥, 𝑦, … , 𝑦) ≤ 𝑔(𝑥, 𝑤, … , 𝑤) + 𝑔(𝑤, 𝑦. , … , 𝑦) 

3) g(𝑥, … , 𝑥, 𝑤, … , 𝑤) ≤ 𝑆𝑔(𝑥, 𝑤, … , 𝑤) 𝑎𝑛𝑑 𝑔(𝑥, … , 𝑥, 𝑤, … , 𝑤) ≤ (1 + 1 − 𝑠)𝑔(𝑤, 𝑥, … , 𝑥), 

4) g(𝑥0, 𝑥1, … , 𝑥𝑙) ≤ ∑ 𝑔(𝑥𝑖 , 𝑤, … , 𝑤)𝑛
𝑖=0 , 

5) |𝑔(𝑦, 𝑥1, … , 𝑥𝑙) − 𝑔(𝑤, 𝑥1, … , 𝑥𝑙)| ≤ 𝑚𝑎𝑥{𝑔(𝑦, 𝑤, … , 𝑤), 𝑔(𝑤, 𝑦, … 𝑦)}, 

6) |𝑔(𝑥, … , 𝑥, 𝑤, … , 𝑤) − 𝑔(𝑥, … , 𝑥, 𝑤, … , 𝑤)| ≤ |𝑠 − 𝑠′|𝑔(𝑥, 𝑤, … , 𝑤), 

7) g(𝑥, 𝑤, … , 𝑤) ≤ (1 + (𝑠 − 1)(1 + 1 − 𝑠)𝑔(𝑥, … , 𝑥, 𝑤, … , 𝑤). 

Definition 2.4: Let (𝑋, 𝑔) be a g- metric space, 𝑥 ∈ 𝑋 be a point and {𝑥𝑘} be a 

Sequence in X. 

1) {𝑥𝑘} 𝑖s g-convergent to x, if for all 𝜖 > 0, there exists 𝑁 ∈ ℕ 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑓𝑜𝑟 

𝑖1, … , 𝑖1 ≥ 𝑁, 𝑔(𝑥, 𝑥1, … , 𝑥1 <∈). 

2) {𝑥𝑘} is said to be g-Cauchy; if for all ∈> 0 there exists 𝑁 ∈ ℕ such that 

𝑖1, … , 𝑖1 ≥ 𝑁, 𝑔(𝑥, 𝑥1, … , 𝑥1 <∈). 

3) (𝑋, 𝑔) is complete, if every g-Cauchy sequence in X is g-convergent. 

Results and Discussions 

In this section, we introduce the definition of statistical convergence of sequences in g-metric spaces and study some 

basic properties. The asymptotic (or natural) density of a set of positive integers K is defined for as follows, 

𝛿(𝐾) = lim
𝑛

1

𝑛
[{𝑘 ≤ 𝑛: 𝑘 ∈ 𝐾}], 

, which denotes the number of elements of set K that do not exceed n. 

Definition 3.1: [8] The sequence [𝑥𝑘} is said to be statistically convergent to x, if for every 𝜖 > 0 

lim
𝑛

1

𝑛
|{𝑘 ≤ 𝑛: |𝑥𝑘 − 𝑥| <∈}| = 1. 

Definition 3.2:  The sequence {𝑥𝑘} is said to be statistically Cauchy sequence, if for every ∈> 𝑜, there exists a positive 

integer number N depending on ∈ such that, 

lim
𝑛

1

𝑛
|{𝑘 ≤ 𝑛: |𝑥𝑘 − 𝑥𝑁| <∈}| = 1. 

For more information about the properties of statistical convergence, [7,8,10,11] can be addressed. 

Now, the main definition of this paper are ready to be given. 

Definition 3.3: Let 𝑙 ∈ ℕ, 𝐴𝜖ℕ𝑙  and A (n) = {𝑖1, 𝑖2, … , 𝑖𝑙 , ≤ 𝑛: (𝑖1, 𝑖2, … , 𝑖𝑙) ∈ 𝐴}, 

Then, 𝛿𝑙(𝐴) ≔ lim
𝑛→∞

𝑙!

𝑛𝑙
|𝐴(𝑛)|, is called the l-dimensional asymptotic (or natural) density of the set A. 

Definition 3.4: Let {𝑥𝑛}be a sequence in a g-metric space (𝑋, 𝑔). 

i) {𝑥𝑛} is statistically convergent to x, if for all 𝜖 > 0, 

Lim
𝑛→∞

𝑙!

𝑛𝑙
|{(𝑖1, 𝑖2, … , 𝑖𝑙) ∈ ℕ𝑙:   𝑖1, 𝑖2, … , 𝑖𝑙 < 𝑛,     𝑔(𝑥, 𝑥1, 𝑥2, … 𝑥𝑖𝑙

) <∈}| 

And is denoted by, gs - 𝑙𝑖𝑚𝑛→∞𝑥𝑛 = 𝑥 𝑜𝑟 𝑥𝑛 → 𝑥. 
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ii) {𝑥𝑛} is said to be statistical g-Cauchy, if for ∈> 0, there exists 𝑖∈ ∈ ℕ such that 

lim
𝑛→∞

𝑙!

𝑛𝑙
|{(𝑖1, 𝑖2, … , 𝑖𝑙) ∈ ℕ𝑙 ∶  𝑖1, 𝑖2, … , 𝑖𝚤 ≤ 𝑛, 𝑔(𝑥𝑖∈,𝑥𝑖1

𝑥𝑖2
, … , 𝑥𝑖𝑙

) <∈}| = 1. 

Theorem 3.1: In g-metric spaces, every convergent sequence is statistically convergent. 

Proof. Let {𝑥𝑛} be a sequence in g-metric space (X,g) such that converges to x. For ∈> 0 there exist   𝑛0 ∈ ℕ  such that 

for all 𝑖1, 𝑖2, … , 𝑖𝑙 ≥ 𝑛0,    𝑔(𝑥, 𝑥𝑖1
, 𝑥𝑖2

, … , 𝑥𝑖𝑙
. )  

Set 

𝐴(𝑛) := {(𝑖1, 𝑖2, … , 𝑖𝑙) ∈ ℕ𝑙   ∶  𝑖1, 𝑖2, … , 𝑖𝑙 ≤ 𝑛, 𝑔(𝑥, 𝑥𝑖1
𝑥𝑖2

, … , 𝑥𝑖𝑙
) <∈ }. 

|𝐴(𝑛)| ≥ (
𝑛 − 𝑛0

𝑙
) 

And 

lim
𝑛→𝜖∞

𝑙! |𝐴(𝑛)|

𝑛𝑙
≥ lim

𝑛→∞

𝑙!

𝑛𝑙
(

𝑛 − 𝑛0

𝑙
) = 1, 

So 

g𝑠 − lim
𝑛→∞

𝑥𝑛 = 𝑥. 

The following example shows that the converse of the above theorem is not valid. 

Example 2.6.: Let X = R and g be the metric as follows; g : ℝ3 → ℝ+, 

g(𝑥, 𝑦, 𝑧) = 𝑚𝑎𝑥{|𝑥 − 𝑦|, |𝑥 − 𝑧|, |𝑦 − 𝑧|}. 

Consider the following sequence, 

𝑥𝑘 = {
𝑘 𝑖𝑓 𝑘 𝑖𝑠 𝑠𝑞𝑢𝑎𝑟𝑒
0 0. 𝜔

 

{𝑥𝑘} is statistically convergent while it is not convergent normally. 

The following theorem shows that the statistical limit in g-metric space is unique. 

Theorem 3.2: Let {𝑥𝑛} be a sequence in g-metric space (X,g)  such that 𝑥𝑛 
𝑔𝑠
→

𝑦, 𝑡ℎ𝑒𝑛 𝑋 =  𝑦. 

Proof. For arbitrary ∈> 0, 𝑆𝑒𝑡 

A(∈): = {(𝑖1, 𝑖2, … , 𝑖𝑙) ∈ ℕ𝑙 ∶    𝑔(𝑥, 𝑥𝑖1
, 𝑥𝑖2

, … , 𝑥𝑖𝑙
)  ≥

∈

2!
 }, 

B(∈): =  {(𝑖1, 𝑖2, … , 𝑖𝑙) ∈ ℕ𝑙 :     𝑔(𝑦, 𝑥𝑖1
, 𝑥𝑖2

, … , 𝑥𝑖𝑙
) ≥

∈

2!
}, 

Since 𝑥𝑛

𝑔𝑠
→ 𝑥 𝑎𝑛𝑑 𝑥𝑛

𝑔𝑠
→ 𝑦, therefore 𝛿𝑙(𝐴(𝜖)) = 0 and 𝛿𝑙(𝐵(𝜖)) = 0. 

Let C(∈) ∶= 𝐴(∈) ∪ 𝐵(∈), 𝑡ℎ𝑒𝑛 𝛿𝑙(𝐶(𝜖))=0,   ℎ𝑒𝑛𝑐𝑒 𝛿𝑙(𝐶𝑐(𝜖)) = 1. 

Suppose (𝑖1, 𝑖2, … , 𝑖𝑙) ∈ 𝐶𝑐(∈), then by Theorem 2.1 we have 

g(𝑥, 𝑦, 𝑦, … , 𝑦) ≤ 𝑔(𝑥, 𝑥𝑖1
, 𝑥𝑖1

, … , 𝑥𝑖1
) + 𝑔(𝑥𝑖1

, 𝑦, 𝑦, … , 𝑦) 

≤ 𝑔(𝑥, 𝑥𝑖1
, 𝑥𝑖1

, … , 𝑥𝑖1
) + 𝑙 (𝑔(𝑦, 𝑥𝑖1

, 𝑥𝑖1
, … , 𝑥𝑖1

)) 

≤ 𝑔(𝑥, 𝑥𝑖1
, 𝑥𝑖2

, … , 𝑥𝑖𝑙
) + 𝑙𝑔(𝑦, 𝑥𝑖1

, 𝑥𝑖2
, … , 𝑥𝑖𝑙

) 

≤ 𝑙 (𝑔(𝑥, 𝑥𝑖1
, 𝑥𝑖2

, … , 𝑥𝑖𝑙
) + 𝑔(𝑦, 𝑥𝑖1

, 𝑥𝑖2
, … , 𝑥𝑖𝑙

)) 

< 𝑙 (
∈

2!
+

𝜖

2!
) 

=  ∈ 

Since ∈ > 0 is arbitrary, we get 𝑔(𝑥, 𝑦, 𝑦, … 𝑦) = 0, 

Therefore 𝑥 = 𝑦. 

Definition 3.5: A set A= {𝑛𝑘: 𝑘 ∈ ℕ} is said to be statistically dense in ℕ, 𝑖𝑓 𝑡ℎ𝑒 𝑠𝑒𝑡 

𝐴(𝑛) = {(𝑖1, 𝑖2, … , 𝑖𝑙) ∈ ℕ𝑙: 𝑖𝑗 ∈ 𝐴,   𝑖1, 𝑖2, … , 𝑖𝑙  ≤ 𝑛 }, has asymptotic density 1. 𝑖. 𝑒., 

𝛿𝑙(𝐴) = lim
𝑛→∞

𝑙! |𝐴(𝑛)|

𝑛𝑙
= 1. 

Definition 3.6: A subsequence {𝑥𝑛𝑘
} of a sequence {𝑥𝑛} 𝑖𝑛 𝑎 𝑔 −metric space (𝑋, 𝑔) 𝑖𝑠 

Statistically dense, if the index set {𝑛𝑘: 𝑘 ∈ ℕ} is a statistically dense subset of ℕ, 𝑖. 𝑒., 

𝛿𝑙({𝑛𝑘; 𝑘𝜖ℕ}) = 1. 
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It is proven in g-metric space. 

Theorem 3.3: Let {𝑥𝑛} be a sequence in a 𝑔 −metric space (𝑋, 𝑔). Then the followings 

Are equivalent. 

1) {𝑥𝑛} is statistically convergent in (𝑋, 𝑔). 

2) There is a convergent sequence {𝑦, 𝑛 }  in 𝑋 such that 𝑥, 𝑛 = 𝑦_n  for almost all 𝑛 ∈ 𝑁. 

3) There is a statistically dense subsequence {𝑥𝑛𝑘
} 𝑜𝑓 {𝑥𝑛} such that {𝑥𝑛𝑘

} is convergent. 

4) There is a statistically dense subsequence {𝑥𝑛𝑘
} of {𝑥𝑛}  such that{𝑥𝑛𝑘

}  is statistically convergent. 

Proof. (1 ⇒ 2) 

Let ∈> 0 𝑎𝑛𝑑 {𝑥𝑛} be a sequence such that statistically converges to 𝑥 ∈ 𝑋. 𝑖. 𝑒., 

lim
𝑛→∞

𝑙!

𝑛𝑙
|{(𝑖1, 𝑖2, … , 𝑖𝑙) ∈ ℕ𝑙: 𝑖1, 𝑖2, … , 𝑖𝑙 ≤ 𝑛, 𝑔(𝑥, 𝑥𝑖1

, 𝑥𝑖2
, … , 𝑥𝑖𝑙

) <∈  }| = 1. 

For every k∈ ℕ, there exist 𝑛𝑘𝜖ℕ, such that for every 𝑛 > 𝑛𝑘, 

𝑙!

𝑛𝑙
|{(𝑖1, 𝑖2, … , 𝑖𝑙) ∈ ℕ𝑙: 𝑖1, 𝑖2, … , 𝑖𝑙 ≤ 𝑛, 𝑔(𝑥, 𝑥𝑖1

, 𝑥𝑖2
, … , 𝑥𝑖𝑙

)  <
1

2𝑘
 }| > 1 −

1

2𝑘
. 

We can choose {𝑛𝑘} 𝑎𝑠 𝑎𝑛 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑖𝑛 ℕ. 𝐷𝑒𝑓𝑖𝑛𝑒 {𝑦𝑚} 𝑎𝑠 𝑓𝑜𝑙𝑙𝑜𝑤𝑠 

𝑦𝑚 = {
𝑥𝑚 ,         1 ≤ 𝑚 ≤ 𝑛1,

𝑥𝑚,          𝑛𝑘 < 𝑚 ≤ 𝑛𝑘+1,    𝑖1, 𝑖2, … , 𝑖𝑙−1

𝑥,                                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
≤ 𝑛𝑘+1, 𝑔(𝑥, 𝑥𝑖1

𝑥𝑖2
, … , 𝑥𝑖𝑙

) <
1

2𝑘
, 

Choose 𝑘 ∈ ℕ such that 
1

2𝑘  <∈. It is clear that {𝑦𝑚} converges to x. Fix  𝑛 ∈ ℕ, for 

𝑛𝑘 < 𝑛 ≤ 𝑛𝑘+1,  we have,  {(𝑖1, 𝑖2, … , 𝑖𝑙) ∈ ℕ𝑙: 𝑖1, 𝑖2, … , 𝑖𝑙 ≤ 𝑛; 𝑥𝑖𝑗
≠ 𝑦𝑖𝑗

} 

⊆ {(𝑖1, 𝑖2, … , 𝑖𝑙) ∈ ℕ𝑙: 𝑖1, 𝑖2, … , 𝑖𝑙 ≤ 𝑛} 

− {(𝑖1, 𝑖2, … , 𝑖𝑙)𝜖ℕ𝑙: 𝑖1, 𝑖2, … , 𝑖𝑙 ≤ 𝑛𝑘, 𝑔(𝑥, 𝑥𝑖1
, 𝑥𝑖2

, … , 𝑥𝑖𝑙
) ≤

1

2𝑘
}. 

So 

lim
𝑛→∞

𝑙!

𝑛𝑙
|{(𝑖1, 𝑖2, … , 𝑖𝑙 , ) ∈ ℕ𝑙: 𝑖1, 𝑖2, … , 𝑖𝑙 ≤ 𝑛; 𝑥𝑖𝑗

≠ 𝑦𝑖𝑗
}| ≤ lim

𝑛→∞

𝑙!

𝑛𝑙
(

𝑛
𝑙

) 

− lim
𝑛→∞

𝑙!

𝑛𝑙
|{(𝑖1, 𝑖2, … 𝑖𝑙) ∈ ℕ𝑙: 𝑖1, 𝑖2, … , 𝑖𝑙 ≤ 𝑛; 𝑔(𝑥, 𝑥𝑖1

, 𝑥𝑖2
, … , 𝑥𝑖𝑙

) <
1

2𝑘
}| 

≤ 1 − (1 −
1

2𝑘
) =

1

2𝑘
<∈. 

Hence 

𝛿𝑙 ({(𝑖1, 𝑖2, … , 𝑖𝑙)𝜖ℕ𝑙: 𝑥𝑖𝑗
 ≠  𝑦𝑖𝑗

}) = 0   (𝑎𝑙𝑚𝑜𝑠𝑡 𝑎𝑙𝑙). 

(2⇒ 3) 

Suppose that (𝑦𝑛)  be a convergent sequence in X such that 𝑥𝑛  = 𝑦𝑛  for almost 

n ∈ ℕ.  𝑆𝑒𝑡 𝐴 = {𝑛 ∈ ℕ ∶  𝑥𝑛 = 𝑦𝑛}. 𝑆𝑖𝑛𝑐𝑒 𝑥𝑛 = 𝑦𝑛 𝑓𝑜𝑟 𝑎𝑙𝑚𝑜𝑠𝑡 𝑎𝑙𝑙 𝑛, ℎ𝑒𝑛𝑐𝑒 𝛿𝑙(𝐴) = 1 

and therefore  {𝑦𝑛; 𝑛 ∈ 𝐴} 𝑖𝑠 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑡 𝑎𝑛𝑑 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑎𝑙𝑙𝑦 𝑑𝑒𝑛𝑠𝑒 𝑠𝑢𝑏𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑜𝑓 

of {𝑥𝑛}. 

(3 ⇒ 4)  It is a direct consequence of  

Theorem 3.1: 

(4 ⇒ 1) Suppose {𝑥𝑛𝑘
} 𝑏𝑒 𝑎 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑎𝑙𝑙𝑦 𝑑𝑒𝑛𝑠𝑒 𝑠𝑢𝑏𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 {𝑥𝑛} 𝑠𝑢𝑐ℎ that statistically 

converges to 𝑥 ∈ 𝑋, 𝑖, 𝑒., 

𝑔𝑠 − lim
𝑘→∞

𝑥𝑛𝑘
= 𝑥 ∈ 𝑋 𝑎𝑛𝑑 𝑠𝑒𝑡 𝐴 = {𝑛𝑘; 𝑘 ∈ ℕ}, 

Then, 𝛿𝑙(𝐴) = 1. 

𝐹𝑜𝑟 ∈> 0 {(𝑖1, 𝑖2, … , 𝑖𝑙) ∈ ℕ𝑙: 𝑖1, 𝑖2, … , 𝑖𝑙 ≤ 𝑛, 𝑔(𝑥, 𝑥𝑖1
, 𝑥𝑖2

, … , 𝑥𝑖𝑙
) < ∈  } 

⊇ {(𝑖1, 𝑖2, … , 𝑖𝑙) 𝜖 ℕ𝑙 ∶  𝑖𝑗  𝜀 𝐴,  𝑖1, 𝑖2, … , 𝑖𝑙  ≤ 𝑛, 𝑔(𝑥, 𝑥𝑖1
, 𝑥𝑖2

, … , 𝑥𝑖𝑙
)  <  ∈}, 

And, 
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lim
𝑛→∞

𝑙!

𝑛𝑙
|{(𝑖1, 𝑖2, … , 𝑖𝑙) ∈ ℕ𝑙: 𝑖𝑗 ∈ 𝐴, 𝑖1 , 𝑖2, … , 𝑖𝑙 ≤ 𝑛, 𝑔(𝑥, 𝑥𝑖1

, 𝑥𝑖2
, … , 𝑥𝑖𝑙

) <∈ }| 

≥ lim
𝑛→∞

𝑙!

𝑛𝑙 |{(𝑖1, 𝑖2, … , 𝑖𝑙) ∈ ℕ𝑙: 𝑖𝑗 ∈ 𝐴, 𝑖1, 𝑖2, … , 𝑖𝑙 ≤ 𝑛,   𝑔(𝑥, 𝑥𝑖1
, 𝑥𝑖2

, … , 𝑥𝑖𝑙
)  <∈ }| = 1. 

Hence 𝑔𝑠 − lim
𝑛→∞

𝑥𝑛 = 𝑥. 

The following corollary is a direct consequence of Theorem 3.3. 

Corollary 3.1. In any g-metric spaces, every statistically convergent sequence has a convergent subsequence. 

Theorem 3.4. Every statistically convergent sequence is statistically g-Cauchy. 

Proof. Let {𝑥𝑛} 𝑏𝑒 𝑎 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑎𝑙𝑙𝑦 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑡 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑖𝑛 𝑔 − 𝑚𝑒𝑡𝑟𝑖𝑐 𝑠𝑝𝑎𝑐𝑒 (𝑋, 𝑔) 

and ∈> 0, 𝑡ℎ𝑒𝑛, 

lim
𝑛→∞

𝑙!

𝑛𝑙
|{(𝑖1, 𝑖2, … , 𝑖𝑙) ∈ ℕ𝑙: 𝑖1, 𝑖2, … , 𝑖𝑙 ≤ 𝑛, 𝑔(𝑥, 𝑥𝑖1

, 𝑥𝑖2
, … , 𝑥𝑖𝑙

) <
∈

𝑙|(𝑙 + 1)|
  }| = 1 

By the monotonicity condition for the g-metric and parts (4) and (7) of Theorem 1.3, it follows that, 

g(𝑥𝑖∈
, 𝑥𝑖1

, 𝑥𝑖2
, … , 𝑥𝑖𝑙

) ≤ ∑ 𝑔(𝑥𝑖𝑘
, 𝑥, … , 𝑥) ≤ ∑ 𝑙𝑔(𝑥, 𝑥𝑖𝑘

, … , 𝑥𝑖𝑘
).𝑙

𝑘=0
𝑙
𝑘=0  

So 

{(𝑖1, 𝑖2, … , 𝑖𝑙) ∈ ℕ𝑙: 𝑖1, 𝑖2, … , 𝑖𝑙 ≤ 𝑛, 𝑔(𝑥, 𝑥𝑖1
, 𝑥𝑖2

, … , 𝑥𝑖𝑙
) <

∈

𝑙(𝑙 + 1)
 } 

⊆ {(𝑖1, 𝑖2, … , 𝑖𝑙) ∈ ℕ𝑙: 𝑖1, 𝑖2, … , 𝑖𝑙 ≤ 𝑛,   𝑔(𝑥𝑖∈
, 𝑥𝑖1

, 𝑥𝑖2
, … , 𝑥𝑖𝑙

) <∈. } 

Therefore 

lim
𝑛→∞

𝑙!

𝑛𝑙
|{(𝑖1, 𝑖2, … , 𝑖𝑙) ∈ ℕ𝑙: 𝑖1, 𝑖2, … , 𝑖𝑙 ≤ 𝑛,   𝑔(𝑥𝑖∈

, 𝑥𝑖1
, 𝑥𝑖2

, … , 𝑥𝑖𝑙
) <∈}| = 1. 

Thus, {𝑥𝑛} is a statistically g-Cauchy sequence in (𝑋, 𝑔). 

Definition 3.7.  Let (𝑋, 𝑔) be a g-metric space, if every statistically Cauchy sequence is statistically convergent, then 

(𝑋, 𝑔) is said statistically complete. 

Corollary 3.2.  Every statistically complete g-metric space is complete. 

Proof. Let (𝑋, 𝑔) be a statistically complete g-metric. Suppose {𝑥𝑛} be a Cauchy sequence in (𝑋, 𝑔),  then it is a statistical 

sequence in (𝑋, 𝑔). Since (𝑋, 𝑔) is statistically complete so {𝑥𝑛} is statistically convergent. By Corollary 2.11, there is 

a subsequence {𝑥𝑛} of {𝑥𝑛} that converges to a point 𝑥 ∈ 𝑋. 

Since {𝑥𝑛} is Cauchy, hence, for ∈> 0, there exist 𝑁 ∈ ℕ 𝑎𝑛𝑑 𝑥𝑖∈
∈ {𝑥𝑛} such that for 

𝑖1, 𝑖2, … , 𝑖𝑙 ≥ 𝑁 we have, 𝑔 (𝑥, 𝑥𝑖𝑛1
, 𝑥𝑖𝑛2

, … , 𝑥𝑖𝑛𝑙
) <

∈

2
. 

For 𝑖1, 𝑖2, … , 𝑖𝑙 ≥ 𝑁 and applying parts (3) and (4) of Theorem 2.1, it follows that, 

𝑔(𝑥, 𝑥𝑖1
, 𝑥𝑖2

, … , 𝑥𝑖𝑙
) ≤ 𝑔(𝑥, 𝑥𝑖∈

, 𝑥𝑖∈
, … , 𝑥𝑖∈

) + ∑ 𝑔 (𝑥𝑖𝑗
, 𝑥𝑖∈

, 𝑥𝑖∈
, … , 𝑥𝑖∈

)

𝑙

𝑗=1

 

≤ 𝑔 (𝑥, 𝑥𝑛𝑖1
, 𝑥𝑛𝑖1

, … , 𝑥𝑛𝑖1
) + 𝑙 (𝑔 (𝑥𝑖∈

, 𝑥𝑛𝑖1
, 𝑥𝑛𝑖1

, … , 𝑥𝑛𝑖1
)) 

+ ∑ 𝑙𝑔 (𝑥𝑖∈
, 𝑥𝑖𝑗

, 𝑥𝑖𝑗
, … 𝑥𝑖𝑗

)

𝑙

𝑗=1

 

<
𝜖

2
+ 𝑙 (

∈

2𝑙(𝑙 + 1)
) + 𝑙2 (

𝜖

2𝑙(𝑙 + 1)
) 

 

= ∈. 

2. CONCLUSION 

The main aim of this paper is to obtain a more general topological structure by generalizing the important idea of 

statistical convergence in g-metric-like spaces. Here are the main conclusions of my research: Our research given 

rigorous definition of statistical convergence in g-metric-like spaces and proven that many properties of statistical 

convergence in metric spaces can be correctly applied in g-metric-like spaces. 

The research and exploration of statistical convergence in g-metric-like spaces have allowed us to compare and contrast 

it with metric convergence. We have extended several key theorems, such as completeness and compactness 
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conclusions, from metric spaces to g-metric-like spaces.The study has set a precedent for future research in this area by 

studying Statistical Cauchy Sequences, statistical limit points, and statistical cluster points in g-metric-like spaces. These 

results add to the growing body of knowledge about generalized topological spaces and offer a connection between 

statistical convergence theories and g-metric-like spaces. This study provides a platform for future research studies and 

applications across multiple sub-disciplines of mathematics, specifically in fixed-point theory and functional analysis. 

3. SCOPE OF FUTURE RESEARCH 

Although we have made much progress in understanding statistical convergence in g-metric-like spaces thanks to this 

paper, several potential avenues for future research are available: 

Convergence of statistics in various generalized metric spaces: The research can be spun off to encompass metric spaces 

that are not pre-defined, such as probabilistic, fuzzy, or b-metric spaces. A description of what is a generalized metric 

appears here. 

Topological aspects: Find out more about how certain topological aspects in g-metric-like spaces, such as separability 

or connectedness, could be linked to statistical convergence. We can extend statistical convergence in applications of 

fixed point theory in g-metric-like spaces for that we develop the sequence space such kind of spaces by using statistical 

sequences and then studies on their many properties or how to use them, too this idea should be also extended to 

summability theory with consequences from our definitions about these notions defined through a topology similar like 

g-bounds are one suggestion et cetera consequently several function classes raised at section can be proper example 

applied as scrutiny. In this paper, pointwise and uniform statistical convergence was studied. 
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