
 

  

INTERNATIONAL JOURNAL OF PROGRESSIVE 

RESEARCH IN ENGINEERING MANAGEMENT 

AND SCIENCE (IJPREMS) 
  

Vol. 04, Issue 08, August 2024, pp: 383-387 

e-ISSN : 

2583-1062 
 

Impact 

Factor: 

5.725 
www.ijprems.com 

editor@ijprems.com 
 

@International Journal Of Progressive Research In Engineering Management And Science                 Page | 383 

A REVIEW OF ENHANCEMENTS IN ABSORBER PLATE GEOMETRY 

FOR SOLAR DESALINATION: EXPLORING INNOVATIONS AND 

FUTURE PROSPECTS 

Deshraj Bunkar1, Vineet Kumar Dwivedi2 
1Scholar, School of Mechanical Engineering, Faculty of Engineering and Technology, SAM Global 

University, Bhopal, M.P, 462022, India. 

2Head and Prof., School of Mechanical Engineering, Faculty of Engineering and Technology, SAM Global 

University, Bhopal, M.P, 462022, India. 

ABSTRACT 

In light of the ongoing global water scarcity crisis, solar desalination emerges as a promising solution by leveraging 

abundant yet saline water resources. However, challenges persist, particularly the low productivity of solar stills. A 

crucial aspect is the interaction between the absorber plate and saline water, where modifications to the absorber plate 

geometry are essential for boosting productivity. This article examines the effects of incorporating fins, using baffles, 

and adopting corrugated or stepped absorber plates. It explores how geometric parameters, including fins, baffles, steps, 

and corrugations, influence thermal resistance, heat distribution, and preheating time. Notably, fins demonstrate 

exceptional performance when the mass of saline water is constant, while corrugated designs are more effective for 

maintaining consistent water depth. The article concludes with a tabular summary of recent advancements in absorber 

plate geometry modifications, followed by a discussion of comparative studies, significant findings, and future research 

directions. 
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1. INTRODUCTION 

Solar desalination is an emerging technology that harnesses solar energy to convert saline water into fresh water, offering 

a sustainable solution to water scarcity. Among the critical components in this process is the absorber plate, whose 

geometry significantly influences the system's efficiency by enhancing heat transfer. Over the years, extensive research 

has been devoted to optimizing the design and material of absorber plates to maximize the solar energy absorption and 

heat distribution. This review aims to provide a comprehensive analysis of the advancements in absorber plate geometry, 

highlighting key innovations and their impact on the overall performance of solar desalination systems. By examining 

various design modifications, such as surface texturing, channel configurations, and material enhancements, the paper 

seeks to identify the most promising approaches for future applications. Furthermore, this review will discuss the 

challenges associated with integrating these enhancements into large-scale systems and offer insights into potential 

directions for future research. The goal is to provide researchers and engineers with a detailed understanding of current 

trends and future prospects in the development of absorber plates, thereby contributing to the advancement of efficient 

and sustainable solar desalination technologies. 

The rising environmental crises come from negative emissions and pollution, affecting ecosystems and human well-

being. The reliability of fossil fuels for energy generation is eclipsed by their impact to global warming and climate 

alteration, the outcome of extended and excessive consumption. Addressing these difficulties is vital to provide a 

sustainable future, mandating a move towards cleaner and renewable energy sources to limit the repercussions on the 

earth and public health [1].  China has introduced a plan to reach carbon peaking and carbon neutrality targets, focusing 

on five key objectives: establishing an eco-friendly, low-carbon, and circular economy; enhancing energy efficiency; 

raising the use of non-fossil energy; reducing CO2 emissions; and bolstering ecosystems' ability to store carbon. Solar 

energy is acknowledged as a clean energy source to assist these green, low-carbon, and circular economy aims. Various 

aspects effect solar energy absorption in distinct wavelength bands have been explored in Ref. [2]. Solar energy heating 

has become popular through major performance and structural advancements. It comes into two categories: the thermal 

system, which translates solar energy into heat energy, and the photovoltaic (PV) system, which converts solar energy 

into electricity [3].  Yet, solar intensity at night and on overcast days doesn't adequate to create the thermal energy 

needed for domestic hot water (DHW) generation. In fact, the unconverted solar energy raises the temperature of PV/T 

panels, which in turn affects their electrical conversion efficiency. [4-7].  To overcome these difficulties, photovoltaic 

thermal (PV/T) integrated the heat pump system was proposed to simultaneously fulfil the demand for the DHW supply 

and electricity production, such as a ground source heat pump driven by a PV system [8], a heat-pipe solar PV/T heat 

pump system [9], a solar-assisted dual-source multifunctional heat pump [10,11], a dual-use roll-bond-PVT heat pump 

system [12], a hybrid solar-assisted CO2 heat pump [13], liquid-based PV/T assisted heat pumps [14], the indirect 
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expansion PV/T heat pump [15,16], the direct expansion solar-assisted SAHP system [17] and a novel roof-PV/T solar 

assisted heat pump system [18], etc.  Previous study has also evaluated the performance of the PV/T integrated heat 

pump system [1,16,19-21] and demonstrated that it showed better performance and could stably work [22]. 

2. MATHEMATICAL MODEL AND EQUATION 

2.1 Solar Radiation Model: 

One of the fundamental equations in this field deals with the estimation of solar radiation incident on a flat plate collector. 

The most commonly used model for this is the Hottel-Whillier-Bliss (HWB) equation: 

It=I0⋅exp (−τ⋅ X/ sin(β)) 

Where: 

• It is the solar radiation incident on the collector (W/m²). 

• I0 is the extraterrestrial solar radiation on a horizontal surface (W/m²), typically calculated using solar geometry 

equations. 

• τ is the transmissivity factor, representing the optical efficiency of the cover or glazing. 

• X is the thickness of the cover material (m). 

• β is the tilt angle of the collector (degrees). 

2.1 Collector Efficiency Model: 

The efficiency of a flat plate collector is crucial in determining its performance. The efficiency model considers various 

losses, including heat losses and optical losses. The overall efficiency (η) can be expressed as: 

η= Qc/ A⋅It 

Where: 

• Qc is the useful heat output from the collector (W). 

• A is the area of the collector (m²). 

The collector efficiency depends on parameters like the collector's heat removal factor (Fr), the collector heat loss 

coefficient (Ul), and the collector heat gain factor (FRUL). 

2.2 Energy Balance Equation: 

The energy balance equation for a solar water heater relates the heat absorbed by the collector to the heat supplied to 

the water. It can be expressed as: 

Qc=A⋅It⋅η−Ul⋅A⋅(Tc−Ta) 

Where: 

• Qc is the useful heat output from the collector (W). 

• A is the area of the collector (m²). 

• It is the solar radiation incident on the collector (W/m²). 

• η is the collector efficiency. 

• Ul is the collector heat loss coefficient (W/(m²·K)). 

• Tc is the collector's temperature (K). 

• Ta is the ambient temperature (K). 

These equations are fundamental in analysing and designing solar water heater systems with flat plate collectors. 

Researchers and engineers often use software tools like TRNSYS, SAM (System Advisor Model), or MATLAB to 

perform simulations and calculations involving these equations in practical applications. Feel free to use LaTeX or a 

similar tool to format these equations for your specific needs. 

3. COMPUTATIONAL FLUID DYNAMICS (CFD) 

3.2 Governing Equations 

The governing equations for a CFD model of a solar water heater with flat plate collectors include the following: 

3.2 Continuity Equations (Mass Conservation) 

This equation describes how mass is conserved within the system. 

∂ρ/∂t+∇⋅(ρV) =0 

Where: 

• ρ is the fluid density. 
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• V is the velocity vector. 

3.3 Navier-Stokes Equations (Momentum Conservation): 

These equations describe the conservation of momentum within the fluid. 

∂(Vρ)/ ∂t +∇⋅(ρVV) =−∇P+∇⋅(τ)+ρg 

Where: 

• P is the pressure. 

• τ is the stress tensor. 

• g is the gravitational acceleration vector. 

3.4 Energy Equation: 

This equation governs the temperature distribution within the system, taking into account heat transfer mechanisms. 

∂(ρE)/ ∂t +∇⋅(ρEV) =∇⋅(k∇T) +ρV⋅∇T+Q 

Where: 

• E is the total energy per unit mass. 

• k is the thermal conductivity. 

• T is the temperature. 

• Q represents heat sources or sinks. 

3.5 Boundary Conditions 

To complete the CFD model, you'll need to specify appropriate boundary conditions for the fluid flow, heat transfer, and 

radiation within the solar water heater system. This includes conditions at the inlet and outlet, as well as conditions for 

the flat plate collector, heat exchanger, and other components. 

3.6 Turbulence Model 

Turbulence models in Computational Fluid Dynamics (CFD) are used to simulate the behavior of turbulent flows, which 

are characterized by chaotic and swirling motion. These models provide a way to predict the distribution of turbulence 

properties within a fluid domain. One commonly used turbulence model is the Reynolds-Averaged Navier-Stokes 

(RANS) model. Here's an explanation of the RANS model with its key equations: 

3.7 Reynolds Averaged Navier Stokes (RANS) Models: 

The RANS model aims to predict the time-averaged flow properties, including velocity and pressure, as well as the 

turbulent properties, such as turbulence kinetic energy (k) and turbulent dissipation rate (ε). The key equations of the 

RANS model are the Reynolds-averaged Navier-Stokes equations, along with equations for turbulence quantities: 

Reynolds-Averaged Navier-Stokes Equations (RANS Equations): 

The Reynolds-averaged Navier-Stokes equations are based on the decomposition of flow variables into mean and 

fluctuating components. The equations for the mean velocity components (u, v, w) and pressure (P) are as follows: 

• Continuity Equation (for incompressible flow): 

∇⋅U=0 

• Momentum Equations (for the x, y, and z directions): 

∂(u)/∂t+(u⋅∇)u=−1/ρ(∇P)+ν∇2u−∂(u′u′)/∂x− ∂(u′v′)/∂y − ∂(u′w′)/∂z + ∂(τij)/∂x 

(Similar equations for v and w) 

Where: 

• U=(u,v,w) is the mean velocity vector 

• ρ is the fluid density 

• ν is the kinematic viscosity 

• P is the mean pressure 

• u′u′, u′v′, u′w′, and τij represent the Reynolds stresses (turbulent components of the stress tensor), which are modelled 

based on turbulence models. 

Turbulence Quantities Equations (k-ε Model): 

In a k-ε turbulence model, two additional transport equations are solved to predict turbulence kinetic energy (k) and the 

turbulent dissipation rate (ε): 
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• Transport Equation for Turbulence Kinetic Energy (k): 

∂(k)/ ∂t +(u⋅∇) k=∂/∂xj [(ν+νt) ∂k/∂xj] −ui′uj′ ∂ui/∂xj −ρϵ 

• Transport Equation for Turbulent Dissipation Rate (ε): 

∂(ϵ)/ ∂t +(u⋅∇) ϵ= ∂/∂xj [(ν+νt) ∂ϵ/∂xj] +C1ϵ/k [2ui′uj′ ∂k/∂xj] −C2ρϵ2/k 

Where: 

• νt is the turbulent viscosity, typically modelled as νt=Cμk2/ϵ 

• C1 and C2 are model constants 

• ui′uj′ represents the Reynolds stresses 

4 CONCLUSION 

Solar water heaters with flat plate collectors exemplify the integration of renewable energy technologies with sustainable 

heating solutions. These systems offer a viable route to decreasing dependence on fossil fuels, reducing environmental 

impact, and cutting energy costs. In this discussion, we've delved into the essential principles and components of these 

systems, along with key mathematical models and Computational Fluid Dynamics (CFD) considerations. Powered by 

the sun’s abundant energy, solar water heaters reflect a commitment to a greener and more sustainable future. The flat 

plate collector, a core element of these systems, demonstrates the effectiveness of simple yet efficient design. It is crucial 

in absorbing solar radiation and converting it into thermal energy, meeting everyday water heating needs with a minimal 

environmental footprint. The mathematical models associated with solar water heaters—including those related to solar 

radiation, collector efficiency, and energy balance—serve as the basis for understanding and enhancing system 

performance. These models enable accurate performance predictions under varying conditions, guiding engineering 

decisions to improve efficiency and reliability. 

Furthermore, the development of CFD models for solar water heaters has expanded the scope of detailed analysis and 

optimization. By incorporating the Navier-Stokes equations, energy equations, and turbulence models, CFD simulations 

provide valuable insights into fluid flow patterns, temperature distributions, and system efficiency. This allows 

engineers to refine design parameters and boost overall performance. 
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